69 research outputs found

    MicroRNAs targeting oncogenes are down-regulated in pancreatic malignant transformation from benign tumors

    Get PDF
    BACKGROUND MicroRNA (miRNA) expression profiles have been described in pancreatic ductal adenocarcinoma (PDAC), but these have not been compared with pre-malignant pancreatic tumors. We wished to compare the miRNA expression signatures in pancreatic benign cystic tumors (BCT) of low and high malignant potential with PDAC, in order to identify miRNAs deregulated during PDAC development. The mechanistic consequences of miRNA dysregulation were further evaluated. METHODS Tissue samples were obtained at a tertiary pancreatic unit from individuals with BCT and PDAC. MiRNA profiling was performed using a custom microarray and results were validated using RT-qPCR prior to evaluation of miRNA targets. RESULTS Widespread miRNA down-regulation was observed in PDAC compared to low malignant potential BCT. We show that amongst those miRNAs down-regulated, miR-16, miR-126 and let-7d regulate known PDAC oncogenes (targeting BCL2, CRK and KRAS respectively). Notably, miR-126 also directly targets the KRAS transcript at a "seedless" binding site within its 3'UTR. In clinical specimens, miR-126 was strongly down-regulated in PDAC tissues, with an associated elevation in KRAS and CRK proteins. Furthermore, miR-21, a known oncogenic miRNA in pancreatic and other cancers, was not elevated in PDAC compared to serous microcystic adenoma (SMCA), but in both groups it was up-regulated compared to normal pancreas, implicating early up-regulation during malignant change. CONCLUSIONS Expression profiling revealed 21 miRNAs down-regulated in PDAC compared to SMCA, the most benign lesion that rarely progresses to invasive carcinoma. It appears that miR-21 up-regulation is an early event in the transformation from normal pancreatic tissue. MiRNA expression has the potential to distinguish PDAC from normal pancreas and BCT. Mechanistically the down-regulation of miR-16, miR-126 and let-7d promotes PDAC transformation by post-transcriptional up-regulation of crucial PDAC oncogenes. We show that miR-126 is able to directly target KRAS; re-expression has the potential as a therapeutic strategy against PDAC and other KRAS-driven cancers

    Diagnosis of Pancreatic Ductal Adenocarcinoma and Chronic Pancreatitis by Measurement of microRNA Abundance in Blood and Tissue

    Get PDF
    A solid process for diagnosis could have a substantial impact on the successful treatment of pancreatic cancer, for which currently mortality is nearly identical to incidence. Variations in the abundance of all microRNA molecules from peripheral blood cells and pancreas tissues were analyzed on microarrays and in part validated by real-time PCR assays. In total, 245 samples from two clinical centers were studied that were obtained from patients with pancreatic ductal adenocarcinoma or chronic pancreatitis and from healthy donors. Utilizing the minimally invasive blood test, receiver operating characteristic (ROC) curves and the corresponding area under the curve (AUC) analysis demonstrated very high sensitivity and specificity of a distinction between healthy people and patients with either cancer or chronic pancreatitis; respective AUC values of 0.973 and 0.950 were obtained. Confirmative and partly even more discriminative diagnosis could be performed on tissue samples with AUC values of 1.0 and 0.937, respectively. In addition, discrimination between cancer and chronic pancreatitis was achieved (AUC = 0.875). Also, several miRNAs were identified that exhibited abundance variations in both tissue and blood samples. The results could have an immediate diagnostic value for the evaluation of tumor reoccurrence in patients, who have undergone curative surgical resection, and for people with a familial risk of pancreatic cancer

    Plasma MicroRNA Profiles in Rat Models of Hepatocellular Injury, Cholestasis, and Steatosis

    Get PDF
    MicroRNAs (miRNAs) are small RNA molecules that function to modulate the expression of target genes, playing important roles in a wide range of physiological and pathological processes. The miRNAs in body fluids have received considerable attention as potential biomarkers of various diseases. In this study, we compared the changes of the plasma miRNA expressions by acute liver injury (hepatocellular injury or cholestasis) and chronic liver injury (steatosis, steatohepatitis and fibrosis) using rat models made by the administration of chemicals or special diets. Using miRNA array analysis, we found that the levels of a large number of miRNAs (121–317 miRNAs) were increased over 2-fold and the levels of a small number of miRNAs (6–35 miRNAs) were decreased below 0.5-fold in all models except in a model of cholestasis caused by bile duct ligation. Interestingly, the expression profiles were different between the models, and the hierarchical clustering analysis discriminated between the acute and chronic liver injuries. In addition, miRNAs whose expressions were typically changed in each type of liver injury could be specified. It is notable that, in acute liver injury models, the plasma level of miR-122, the most abundant miRNA in the liver, was more quickly and dramatically increased than the plasma aminotransferase level, reflecting the extent of hepatocellular injury. This study demonstrated that the plasma miRNA profiles could reflect the types of liver injury (e.g. acute/chronic liver injury or hepatocellular injury/cholestasis/steatosis/steatohepatitis/fibrosis) and identified the miRNAs that could be specific and sensitive biomarkers of liver injury

    Identification of MicroRNA-21 as a Biomarker for Chemoresistance and Clinical Outcome Following Adjuvant Therapy in Resectable Pancreatic Cancer

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis. The high risk of recurrence following surgical resection provides the rationale for adjuvant therapy. However, only a subset of patients benefit from adjuvant therapy. Identification of molecular markers to predict treatment outcome is therefore warranted. The aim of the present study was to evaluate whether expression of novel candidate biomarkers, including microRNAs, can predict clinical outcome in PDAC patients treated with adjuvant therapy.Formalin-fixed paraffin embedded specimens from a cohort of 82 resected Korean PDAC cases were analyzed for protein expression by immunohistochemistry and for microRNA expression using quantitative Real-Time PCR. Cox proportional hazards model analysis in the subgroup of patients treated with adjuvant therapy (N = 52) showed that lower than median miR-21 expression was associated with a significantly lower hazard ratio (HR) for death (HR = 0.316; 95%CI = 0.166–0.600; P = 0.0004) and recurrence (HR = 0.521; 95%CI = 0.280–0.967; P = 0.04). MiR-21 expression status emerged as the single most predictive biomarker for treatment outcome among all 27 biological and 9 clinicopathological factors evaluated. No significant association was detected in patients not treated with adjuvant therapy. In an independent validation cohort of 45 frozen PDAC tissues from Italian cases, all treated with adjuvant therapy, lower than median miR-21 expression was confirmed to be correlated with longer overall as well as disease-free survival. Furthermore, transfection with anti-miR-21 enhanced the chemosensitivity of PDAC cells.. These data provide evidence that miR-21 may allow stratification for adjuvant therapy, and represents a new potential target for therapy in PDAC

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    The Eocene Thomas Ranch Flora, Allenby Formation, Princeton, British Columbia, Canada

    No full text
    A flora from Thomas Ranch near Princeton, British Columbia, Canada, is assessed for biodiversity and paleoclimate. This latest Early to early Middle Eocene flora occurs in the Allenby Formation. Seventy-six megafossil morphotypes have been recognized, representing at least 62 species, with 29 identified to genus or species. Common taxa include Ginkgo L., Metasequoia Miki, Sequoia Endl., Abies Mill., Pinus L., Pseudolarix Gordon, Acer L., Alnus Mill., Betula L., Fagus L., Sassafras J Presl, Macginitiea Wolfe & Wehr, Prunus L., and Ulmus L. More than 70 pollen and spore types are recognized, 32 of which are assignable to family or genus. The microflora is dominated by conifers (85%-97% abundance), with Betulaceae accounting for most of the angiosperms. The Climate Leaf Analysis Multivariate Program (CLAMP) calculates a mean annual temperature (MAT) of 9.0 ± 1.7 °C and bioclimatic analysis (BA) calculates a MAT of 12.8 ± 2.5 °C. Coldest month mean temperature (CMMT) was \u3e0 °C. Mean annual precipitation (MAP) was \u3e70 cm/year but is estimated with high uncertainty. Both theCLAMPand BA estimates are at the low end of theMATrange previously published for other Okanagan Highland localities, indicating a temperate climate consistent with a mixed conifer-deciduous forest

    Newly recognized diversity in Trochodendraceae from the Eocene of Western North America

    No full text
    The Eocene flora of the Okanogan Highlands in the Pacific Northwest of North America has been recognized previously to include extinct species of both extant genera of the Trochodendraceae. Here, using microcomputed tomography (μCT) scanning to augment traditional methods, we recognize additional diversity, including two new fruit types. Concavistylon wehrii sp. nov. is documented by a fertile twig with attached leaves and an infructescence, allowing for an unusually complete reconstruction of this extinct genus. Concavistyon wehrii infructescences are racemes bearing fruits on short pedicels. Fruits are apically dehiscent capsules with four to six styles. The leaves resemble those of modern Trochodendron in pinnate venation, glandular teeth, and epidermal anatomy but have short petioles. The second new type of infructescence, Pentacentron sternhartae gen. et sp. nov., resembles extant Tetracentron in having small, sessile, apically dehiscent capsules but consistently has five, rather than four, styles. The μCT X-ray imaging demonstrates that fruits of both Concavistylon and Pentacentron differ from those of extant Trochodendraceae in having styles that are concave with stigmas directed inward rather than outward. These fossils, together with previously recognized fossil fruits and leaves of Trochodendron and leaves of Tetracentron from the same beds, indicate that the Trochodendraceae family was more diverse 50–52 Ma than it is today
    corecore