83 research outputs found

    The Gonococcal Genetic Island and Type IV Secretion in the Pathogenic Neisseria

    Get PDF
    Eighty percent of Neisseria gonorrhoeae strains and some Neisseria meningitidis strains encode a 57-kb gonococcal genetic island (GGI). The GGI was horizontally acquired and is inserted in the chromosome at the replication terminus. The GGI is flanked by direct repeats, and site-specific recombination at these sites results in excision of the GGI and may be responsible for its original acquisition. Although the role of the GGI in N. meningitidis is unclear, the GGI in N. gonorrhoeae encodes a type IV secretion system (T4SS). T4SS are versatile multi-protein complexes and include both conjugation systems as well as effector systems that translocate either proteins or DNA–protein complexes. In N. gonorrhoeae, the T4SS secretes single-stranded chromosomal DNA into the extracellular milieu in a contact-independent manner. Importantly, the DNA secreted through the T4SS is effective in natural transformation and therefore contributes to the spread of genetic information through Neisseria populations. Mutagenesis experiments have identified genes for DNA secretion including those encoding putative structural components of the apparatus, peptidoglycanases which may act in assembly, and relaxosome components for processing the DNA and delivering it to the apparatus. The T4SS may also play a role in infection by N. gonorrhoeae. During intracellular infection, N. gonorrhoeae requires the Ton complex for iron acquisition and survival. However, N. gonorrhoeae strains that do not express the Ton complex can survive intracellularly if they express structural components of the T4SS. These data provide evidence that the T4SS is expressed during intracellular infection and suggest that the T4SS may provide an advantage for intracellular survival. Here we review our current understanding of how the GGI and type IV secretion affect natural transformation and pathogenesis in N. gonorrhoeae and N. meningitidis

    Pathogenesis of Neisseria gonorrhoeae and the Host Defense in Ascending Infections of Human Fallopian Tube

    Get PDF
    Neisseria gonorrhoeae is an obligate human pathogen that causes mucosal surface infections of male and female reproductive tracts, pharynx, rectum, and conjunctiva. Asymptomatic or unnoticed infections in the lower reproductive tract of women can lead to serious, long-term consequences if these infections ascend into the fallopian tube. The damage caused by gonococcal infection and the subsequent inflammatory response produce the condition known as pelvic inflammatory disease (PID). Infection can lead to tubal scarring, occlusion of the oviduct, and loss of critical ciliated cells. Consequences of the damage sustained on the fallopian tube epithelium include increased risk of ectopic pregnancy and tubal-factor infertility. Additionally, the resolution of infection can produce new adhesions between internal tissues, which can tear and reform, producing chronic pelvic pain. As a bacterium adapted to life in a human host, the gonococcus presents a challenge to the development of model systems for probing host-microbe interactions. Advances in small-animal models have yielded previously unattainable data on systemic immune responses, but the specificity of N. gonorrhoeae for many known (and unknown) host targets remains a constant hurdle. Infections of human volunteers are possible, though they present ethical and logistical challenges, and are necessarily limited to males due to the risk of severe complications in women. It is routine, however, that normal, healthy fallopian tubes are removed in the course of different gynecological surgeries (namely hysterectomy), making the very tissue most consequentially damaged during ascending gonococcal infection available for laboratory research. The study of fallopian tube organ cultures has allowed the opportunity to observe gonococcal biology and immune responses in a complex, multi-layered tissue from a natural host. Forty-five years since the first published example of human fallopian tube being infected ex vivo with N. gonorrhoeae, we review what modeling infections in human tissue explants has taught us about the gonococcus, what we have learned about the defenses mounted by the human host in the upper female reproductive tract, what other fields have taught us about ciliated and non-ciliated cell development, and ultimately offer suggestions regarding the next generation of model systems to help expand our ability to study gonococcal pathogenesis

    The AmiC/NlpD Pathway Dominates Peptidoglycan Breakdown in Neisseria meningitidis and Affects Cell Separation, NOD1 Agonist Production, and Infection

    Get PDF
    The human-restricted pathogen Neisseria meningitidis, which is best known for causing invasive meningococcal disease, has a nonpathogenic lifestyle as an asymptomatic colonizer of the human naso- and oropharyngeal space. N. meningitidis releases small peptidoglycan (PG) fragments during growth. It was demonstrated previously that N. meningitidis releases low levels of tripeptide PG monomer, which is an inflammatory molecule recognized by the human intracellular innate immune receptor NOD1. In this present study, we demonstrated that N. meningitidis released more PG-derived peptides compared to PG monomers. Using a reporter cell line overexpressing human NOD1, we showed that N. meningitidis activates NOD1 using PG-derived peptides. Generation of such peptides required the presence of the periplasmic N-acetylmuramyl-L-alanine amidase AmiC, and the outer membrane lipoprotein, NlpD. AmiC and NlpD were found to function in cell separation, and mutation of either amiC or nlpD resulted in large clumps of unseparated N. meningitidis cells instead of the characteristic diplococci. Using stochastic optical reconstruction microscopy, we demonstrated that FLAG epitope-tagged NlpD localized to the septum, while similarly-tagged AmiC was found at the septum in some diplococci but distributed around the cell in most cases. In a human whole blood infection assay, an nlpD mutant was severely attenuated and showed particular sensitivity to complement. Thus, in N. meningitidis the cell separation proteins AmiC and NlpD are necessary for NOD1 stimulation and for survival during infection of human blood

    Expression capable library for studies of Neisseria gonorrhoeae, version 1.0

    Get PDF
    Background The sexually transmitted disease, gonorrhea, is a serious health problem in developed as well as in developing countries, for which treatment continues to be a challenge. The recent completion of the genome sequence of the causative agent, Neisseria gonorrhoeae, opens up an entirely new set of approaches for studying this organism and the diseases it causes. Here, we describe the initial phases of the construction of an expression-capable clone set representing the protein-coding ORFs of the gonococcal genome using a recombination-based cloning system. Results The clone set thus far includes 1672 of the 2250 predicted ORFs of the N. gonorrhoeae genome, of which 1393 (83%) are sequence-validated. Included in this set are 48 of the 61 ORFs of the gonococcal genetic island of strain MS11, not present in the sequenced genome of strain FA1090. L-arabinose-inducible glutathione-S-transferase (GST)-fusions were constructed from random clones and each was shown to express a fusion protein of the predicted size following induction, demonstrating the use of the recombination cloning system. PCR amplicons of each ORF used in the cloning reactions were spotted onto glass slides to produce DNA microarrays representing 2035 genes of the gonococcal genome. Pilot experiments indicate that these arrays are suitable for the analysis of global gene expression in gonococci. Conclusion This archived set of Gateway® entry clones will facilitate high-throughput genomic and proteomic studies of gonococcal genes using a variety of expression and analysis systems. In addition, the DNA arrays produced will allow us to generate gene expression profiles of gonococci grown in a wide variety of conditions. Together, the resources produced in this work will facilitate experiments to dissect the molecular mechanisms of gonococcal pathogenesis on a global scale, and ultimately lead to the determination of the functions of unknown genes in the genome

    Structural and Functional Features of a Developmentally Regulated Lipopolysaccharide-Binding Protein

    Get PDF
    ABSTRACT Mammalian lipopolysaccharide (LPS) binding proteins (LBPs) occur mainly in extracellular fluids and promote LPS delivery to specific host cell receptors. The function of LBPs has been studied principally in the context of host defense; the possible role of LBPs in nonpathogenic host-microbe interactions has not been well characterized. Using the Euprymna scolopes-Vibrio fischeri model, we analyzed the structure and function of an LBP family protein, E. scolopes LBP1 (EsLBP1), and provide evidence for its role in triggering a symbiont-induced host developmental program. Previous studies showed that, during initial host colonization, the LPS of V. fischeri synergizes with peptidoglycan (PGN) monomer to induce morphogenesis of epithelial tissues of the host animal. Computationally modeled EsLBP1 shares some but not all structural features of mammalian LBPs that are thought important for LPS binding. Similar to human LBP, recombinant EsLBP1 expressed in insect cells bound V. fischeri LPS and Neisseria meningitidis lipooligosaccharide (LOS) with nanomolar or greater affinity but bound Francisella tularensis LPS only weakly and did not bind PGN monomer. Unlike human LBP, EsLBP1 did not bind N. meningitidis LOS:CD14 complexes. The eslbp1 transcript was upregulated ~22-fold by V. fischeri at 24 h postinoculation. Surprisingly, this upregulation was not induced by exposure to LPS but, rather, to the PGN monomer alone. Hybridization chain reaction-fluorescent in situ hybridization (HCR-FISH) and immunocytochemistry (ICC) localized eslbp1 transcript and protein in crypt epithelia, where V. fischeri induces morphogenesis. The data presented here provide a window into the evolution of LBPs and the scope of their roles in animal symbioses. IMPORTANCE Mammalian lipopolysaccharide (LPS)-binding protein (LBP) is implicated in conveying LPS to host cells and potentiating its signaling activity. In certain disease states, such as obesity, the overproduction of this protein has been a reliable biomarker of chronic inflammation. Here, we describe a symbiosis-induced invertebrate LBP whose tertiary structure and LPS-binding characteristics are similar to those of mammalian LBPs; however, the primary structure of this distantly related squid protein (EsLBP1) differs in key residues previously believed to be essential for LPS binding, suggesting that an alternative strategy exists. Surprisingly, symbiotic expression of eslbp1 is induced by peptidoglycan derivatives, not LPS, a pattern converse to that of RegIIIγ, an important mammalian immunity protein that binds peptidoglycan but whose gene expression is induced by LPS. Finally, EsLBP1 occurs along the apical surfaces of all the host’s epithelia, suggesting that it was recruited from a general defensive role to one that mediates specific interactions with its symbiont

    Characterization of the Single Stranded DNA Binding Protein SsbB Encoded in the Gonoccocal Genetic Island

    Get PDF
    Background: Most strains of Neisseria gonorrhoeae carry a Gonococcal Genetic Island which encodes a type IV secretion system involved in the secretion of ssDNA. We characterize the GGI-encoded ssDNA binding protein, SsbB. Close homologs of SsbB are located within a conserved genetic cluster found in genetic islands of different proteobacteria. This cluster encodes DNA-processing enzymes such as the ParA and ParB partitioning proteins, the TopB topoisomerase, and four conserved hypothetical proteins. The SsbB homologs found in these clusters form a family separated from other ssDNA binding proteins. Methodology/Principal Findings: In contrast to most other SSBs, SsbB did not complement the Escherichia coli ssb deletion mutant. Purified SsbB forms a stable tetramer. Electrophoretic mobility shift assays and fluorescence titration assays, as well as atomic force microscopy demonstrate that SsbB binds ssDNA specifically with high affinity. SsbB binds single-stranded DNA with minimal binding frames for one or two SsbB tetramers of 15 and 70 nucleotides. The binding mode was independent of increasing Mg 2+ or NaCl concentrations. No role of SsbB in ssDNA secretion or DNA uptake could be identified, but SsbB strongly stimulated Topoisomerase I activity

    Has Behavioral Science Tumbled Through the Biological Looking Glass? Will Brief, Evidence-Based Training Return It From the Rabbit Hole?

    Get PDF
    Time constraints and professional demands leave practicing professionals unlikely to enroll in extended training such as a semester-long graduate course. Thus, the three-hour continuing education format has become a standard for those in practice. One may ask what sorts of training strategies optimize that format. To explore that, a three hour training program for seventy-six practicing mental health professionals, most of whom self-identified as psychologists, was devised. It made use of primarily antecedent techniques that have been shown to bring about changed perceptions on a number of topics. Content focused on two areas of importance to behavior analysts, the culture’s increasing acceptance of the biological causation model of disorders such as attentiondeficit hyperactivity disorder (ADHD), unipolar depression, anxiety disorders, and schizophrenia, and the field’s increasing reliance on medications, often to the exclusion of behavioral methods. Pre-post assessment showed that participants had changed their thinking regarding the two content areas. The authors caution that participants’ changed opinions may serve as setting events to changes in practice, but those changes are verbal. One must not assume changes in practice techniques will automatically occur

    Coercive Pressures and Anti-corruption Reporting: The Case of ASEAN Countries

    Get PDF
    This paper aims to investigate the extent of anti-corruption reporting by ASEAN companies and examine whether coercive factors influence the level of disclosure. The authors adopt indicators from the Global Reporting Initiative version 4.0 to measure the extent of anti-corruption disclosures in 117 companies’ reports. Informed by a coercive isomorphism tenet drawn from the institutional theory, the authors propose that several institutional factors influence the extent of their voluntary disclosures. The findings reveal that a large degree of variability difference between the average levels of anti-corruption disclosure in Thailand (434 words) and the Philippines (149 words). The dependence on government tenders and foreign ownership are associated with the level of disclosure. Surprisingly, the United Nation Global Compact membership is not a significant determinant of anti-corruption reporting. This signifies that the membership in the international initiative does not correspond to individual company’s commitment to disclose anti-corruption information. In spite of significant efforts undertaken by global organizations to combat corruption, the level of anti-corruption disclosure is significantly different among the four countries under study. The disclosure of sensitive information such as the confirmed incidences of corruption cases requires careful consideration by the top management as it is subjected to legal implications and reputational risks. Thus, impression management can complement the coercive pressure in explaining the level of anti-corruption reporting. This study is among the first studies which explores the association between coercive factors and the level of anti-corruption disclosure in ASEAN region
    corecore