3,645 research outputs found

    Secondary Structures in Long Compact Polymers

    Full text link
    Compact polymers are self-avoiding random walks which visit every site on a lattice. This polymer model is used widely for studying statistical problems inspired by protein folding. One difficulty with using compact polymers to perform numerical calculations is generating a sufficiently large number of randomly sampled configurations. We present a Monte-Carlo algorithm which uniformly samples compact polymer configurations in an efficient manner allowing investigations of chains much longer than previously studied. Chain configurations generated by the algorithm are used to compute statistics of secondary structures in compact polymers. We determine the fraction of monomers participating in secondary structures, and show that it is self averaging in the long chain limit and strictly less than one. Comparison with results for lattice models of open polymer chains shows that compact chains are significantly more likely to form secondary structure.Comment: 14 pages, 14 figure

    Internal rotor friction instability

    Get PDF
    The analytical developments and experimental investigations performed in assessing the effect of internal friction on rotor systems dynamic performance are documented. Analytical component models for axial splines, Curvic splines, and interference fit joints commonly found in modern high speed turbomachinery were developed. Rotor systems operating above a bending critical speed were shown to exhibit unstable subsynchronous vibrations at the first natural frequency. The effect of speed, bearing stiffness, joint stiffness, external damping, torque, and coefficient of friction, was evaluated. Testing included material coefficient of friction evaluations, component joint quantity and form of damping determinations, and rotordynamic stability assessments. Under conditions similar to those in the SSME turbopumps, material interfaces experienced a coefficient of friction of approx. 0.2 for lubricated and 0.8 for unlubricated conditions. The damping observed in the component joints displayed nearly linear behavior with increasing amplitude. Thus, the measured damping, as a function of amplitude, is not represented by either linear or Coulomb friction damper models. Rotordynamic testing of an axial spline joint under 5000 in.-lb of static torque, demonstrated the presence of an extremely severe instability when the rotor was operated above its first flexible natural frequency. The presence of this instability was predicted by nonlinear rotordynamic time-transient analysis using the nonlinear component model developed under this program. Corresponding rotordynamic testing of a shaft with an interference fit joint demonstrated the presence of subsynchronous vibrations at the first natural frequency. While subsynchronous vibrations were observed, they were bounded and significantly lower in amplitude than the synchronous vibrations

    Microcanonical versus Canonical Analysis of Protein Folding

    Full text link
    The microcanonical analysis is shown to be a powerful tool to characterize the protein folding transition and to neatly distinguish between good and bad folders. An off-lattice model with parameter chosen to represent polymers of these two types is used to illustrate this approach. Both canonical and microcanonical ensembles are employed. The required calculations were performed using parallel tempering Monte Carlo simulations. The most revealing features of the folding transition are related to its first-order-like character, namely, the S-bend pattern in the caloric curve, which gives rise to negative microcanonical specific heats, and the bimodality of the energy distribution function at the transition temperatures. Models for a good folder are shown to be quite robust against perturbations in the interaction potential parameters.Comment: 4 pages, 4 figure

    Unbiased sampling of globular lattice proteins in three dimensions

    Get PDF
    We present a Monte Carlo method that allows efficient and unbiased sampling of Hamiltonian walks on a cubic lattice. Such walks are self-avoiding and visit each lattice site exactly once. They are often used as simple models of globular proteins, upon adding suitable local interactions. Our algorithm can easily be equipped with such interactions, but we study here mainly the flexible homopolymer case where each conformation is generated with uniform probability. We argue that the algorithm is ergodic and has dynamical exponent z=0. We then use it to study polymers of size up to 64^3 = 262144 monomers. Results are presented for the effective interaction between end points, and the interaction with the boundaries of the system

    Evolution of the potential-energy surface of amorphous silicon

    Full text link
    The link between the energy surface of bulk systems and their dynamical properties is generally difficult to establish. Using the activation-relaxation technique (ART nouveau), we follow the change in the barrier distribution of a model of amorphous silicon as a function of the degree of relaxation. We find that while the barrier-height distribution, calculated from the initial minimum, is a unique function that depends only on the level of distribution, the reverse-barrier height distribution, calculated from the final state, is independent of the relaxation, following a different function. Moreover, the resulting gained or released energy distribution is a simple convolution of these two distributions indicating that the activation and relaxation parts of a the elementary relaxation mechanism are completely independent. This characterized energy landscape can be used to explain nano-calorimetry measurements.Comment: 5 pages, 4 figure

    Nonuniversal power law scaling in the probability distribution of scientific citations

    Full text link
    We develop a model for the distribution of scientific citations. The model involves a dual mechanism: in the direct mechanism, the author of a new paper finds an old paper A and cites it. In the indirect mechanism, the author of a new paper finds an old paper A only via the reference list of a newer intermediary paper B, which has previously cited A. By comparison to citation databases, we find that papers having few citations are cited mainly by the direct mechanism. Papers already having many citations ('classics') are cited mainly by the indirect mechanism. The indirect mechanism gives a power-law tail. The 'tipping point' at which a paper becomes a classic is about 21 citations for papers published in the Institute for Scientific Information (ISI) Web of Science database in 1981, 29 for Physical Review D papers published from 1975-1994, and 39 for all publications from a list of high h-index chemists assembled in 2007. The power-law exponent is not universal. Individuals who are highly cited have a systematically smaller exponent than individuals who are less cited.Comment: 7 pages, 3 figures, 2 table

    Markov processes follow from the principle of Maximum Caliber

    Full text link
    Markov models are widely used to describe processes of stochastic dynamics. Here, we show that Markov models are a natural consequence of the dynamical principle of Maximum Caliber. First, we show that when there are different possible dynamical trajectories in a time-homogeneous process, then the only type of process that maximizes the path entropy, for any given singlet statistics, is a sequence of identical, independently distributed (i.i.d.) random variables, which is the simplest Markov process. If the data is in the form of sequentially pairwise statistics, then maximizing the caliber dictates that the process is Markovian with a uniform initial distribution. Furthermore, if an initial non-uniform dynamical distribution is known, or multiple trajectories are conditioned on an initial state, then the Markov process is still the only one that maximizes the caliber. Second, given a model, MaxCal can be used to compute the parameters of that model. We show that this procedure is equivalent to the maximum-likelihood method of inference in the theory of statistics.Comment: 4 page
    • …
    corecore