66 research outputs found

    Trends and Composition—A Sedimentological-Chemical-Mineralogical Approach to Constrain the Origin of Quaternary Deposits and Landforms—From a Review to a Manual

    Get PDF
    In this study, six basic Quaternary landform series (LFS) and their sedimentary deposits (LFS1 aeolian, LFS 2.1 to 2.2 mass wasting, LFS 3 cryogenic-glacial, LFS 4.1 to 4.6 fluvial, LFS 5.1 to 5.2 coastal-marine, LFS 6.1 to 6.3 lacustrine) are subdivided into subtypes and examined with regard to their sedimentological parameters and their mineralogical and chemical compositions. Emphasis is placed on the textural (related to transport and deposition), compositional (sediment load/weight, Eh and pH) and geodynamic maturity of the sedimentary deposits which are influenced by the parent lithology and bedrock tectonic and by the climate during the last 2 Ma. To constrain the development of the LFS and their sediments, composite trend-line diagrams are designed combining sedimentological (x-axis) and chemical/mineralogical dataset (y-axis): (1) sorting vs. heavy mineral content; (2) sphericity of grains vs. silica/carbonate contents; and (3) median vs. Ti/Fe ratios. In addition, the x-y plots showing the log SiO2/Al2O3 vs. log Na2O/K2O are amended by a dataset of the three most common clay minerals, i.e., kaolinite-, mica-, and smectite-group clay minerals. Such joint sedimentological-chemical-mineralogical investigations focused on the depositional environment of unconsolidated clastic sediments of Quaternary age can be used to describe the economic geology and environmental geology of mineral deposits in the pre-Quaternary sedimentary series according to the phrase: “The Present is the key to the Past”. Both trend diagrams and compositional x-y plots can contribute to constraining the development of the full transect of landform series from the fluvial incision and slope retreat to reef islands fringing the coastal zone towards the open sea as far as they are built up of clastic sedimentary deposits enriched in siliceous and/or carbonate minerals. Climate zonation and crustal maturity are the exogenous and endogenous “drivers”, as can be deduced from the compositional (mineralogy and chemistry) and physical (transport and deposition) variations observed in the Quaternary sediments. The current study bridges the gap between a review only based on literature and a hybrid manual generated by practical field studies devoted to applied geosciences in economic and environmental geology (“E & E issue”). © 2022 by the author. Licensee MDPI, Basel, Switzerland

    Marker Minerals in Volcanics and Xenoliths—An Approach to Categorize the Inferred Magmatic Rocks Underneath the Present-Day Volcanic Landscape of Tenerife, Spain (NW African Rare Mineral Province)

    Get PDF
    A mineralogical mapping (terrain analysis) based on micro-mounts has been performed in the Archipelago of the Canary Islands, Spain. The rare elements Be, F, Li, Nb, Ta, Zr, Hf, and rare earth elements (REE) were investigated on the largest island of the Canary Islands Archipelago, Tenerife, Spain. This study forms a contribution to the metallogenetic evolution of the offshore area of the NW African Rare Mineral Province. The finds made at Tenerife were correlated by means of minero-stratigraphy with the adjacent islands La Gomera, Gran Canaria and Fuerteventura, where typical critical element host rocks, e.g., carbonatites, are exposed. At Tenerife, these hidden rock types are only indicated by a wealth of 128 compositional first-order marker minerals hosting Be, F, Zr, Nb, Ta, Zr, Hf, Li, Cs, Sn, W, Ti and REE plus Y and another 106 structural second-order marker minerals describing the geodynamic and morpho-structural evolution of Tenerife (Mn, Fe, Pb, U, Th, As, Sb, V, S, B, Cu, Zn, Mo, Au). Based upon the quantitative micro-mineralogical mapping of lithoclasts and mineralogical xenoliths (foid-bearing monzodiorite/gabbro, (nepheline) syenite, phonolite trachyte) in volcanic and volcaniclastic rocks, hidden intrusive/subvolcanic bodies can be delineated that are associated with contact-metasomatic, zeolitic and argillic alteration zones, as well as potential ore zones. Two potential types of deposits are determined. These are pegmatite-syenites with minor carbonatites bound to a series of agpaitic intrusive rocks that are genetically interlocked with rift zones and associated with a hotspot along a passive continental margin. Towards the east, the carbonatite/alkali magmatite ratio reverses at Fuerteventura in favor of carbonatites, while at Gran Canaria and La Gomera, shallow hypogene/supergene mineral associations interpreted as a marginal facies to Tenerife occur and a new REE discovery in APS minerals has been made. There are seven mineralizing processes different from each other and representative of a peculiar metallogenic process (given in brackets): Protostage 1 (rifting), stages 2a to 2d (differentiation of syenite–pegmatite), stages 3 to 4b (contact-metasomatic/hydrothermal mineralization), stages 5a to 5b (hydrothermal remobilization and zeolitization), stage 6 (shallow hypogene-supergene transition and kaolinization), and stage 7 (auto-hydrothermal-topomineralic mineralization). The prerequisites to successfully take this holistic approach in economic geology are a low maturity of the landscapes in the target area, a Cenozoic age of endogenous and exogenous processes amenable to sedimentological, geomorphological, volcano-tectonic and quantitative mineralogical investigations. The volcanic island’s mineralogical mapping is not primarily designed as a proper pre-well-site study on the Isle of Tenerife, but considered a reference study area for minero-stratigraphic inter-island correlation (land–land) and land–sea when investigating the seabed and seamounts around volcanic archipelagos along the passive margin, as exemplified by the NW African Craton and its metallogenic province. This unconventional exploration technique should also be tested for hotspot- and rift-related volcanic islands elsewhere on the globe for mineral commodities different from the ones under study

    Oxidized and reduced kaolin fan deposits: Their sedimentological-mineralogical facies and physical-chemical regime (North-Bavarian Kaolin Mining District, Germany)

    Get PDF
    The kaolin-fan deposits under consideration are sedimentary in origin and they bridge the gap between residual kaolin deposits proximal to the fan apex in crystalline basement rocks and syn(dia)genetic sandstone-hosted kaolin deposits on the fan apron. The “kaolin ore beds” on the other hand, developed in an arenaceous braided-river drainage system (bed load >>> suspended load deposits), reworking into secondary kaolin deposits that took place either intraformationally during the evolution of the kaolin fan deposits or epigenetically after unroofing of the kaolin deposits in high-sinuosity drainage systems passing, locally, into ephemeral lakes and mud flats (suspended load > bed load deposits). The reference type for kaolin fan deposits has been studied in terrigeneous sediments which are largely mined at Hirschau–Schnaittenbach, along the Western edge of the Bohemian Massif, SE Germany. The fan deposits formed under alternating wet and dry subtropical climatic conditions during the early Triassic. Different intensities of uplift in the hinterland and the frequency of tectonic quiescence to tectonic pulse had a strong impact on the paleogradient, facies and hydrography of the kaolin fan deposits, resulting in the build-up of oxidized kaolin fans (OKF) and reduced kaolin fans (RKF). The OKF provide favorable conditions for the accumulation and preservation of kaolin deposits of economic potential, due to a low paleogradient and a continuous rate of uplift. The opposite is the case in the RKF that formed more proximal to the initial residual kaolin deposits and, more basinward, grade into sandstone-hosted (non)-sulfidic faciesbound Pb deposits that were targeted upon during exploration campaigns in the study area. The mineral association of the kaolin fan deposits has been categorized as follows: the allochthonous heavy minerals are zircon, tourmaline, apatite, monazite, xenotime, rutile, garnet, titaniferous magnetite, and ilmenite. They do not significantly vary between OKF and RKF. The autochthonous heavy minerals show strong contrasts in their heavy mineral suites. The RKF are enriched in sulfides and arsenides, which can be deleterious for the kaolin raw material and exclude its use for special final products (anatase, hematite, galena, sphalerite, marcasite, pyrite, bravoite (Ni pyrite), “limonite”, goethite, Ag–Cu–Ni–As sulfides, and barite). The OKF are rather poor in accessory minerals and contain anatase, hematite, and APS minerals. The latter are geo-acidometers (marker minerals for low pH) and considered as an ore guide to high-potential target areas for kaolin. The allochthonous light minerals quartz and K feldspar are common to both fan types and were only in parts affected by kaolinization, whereas plagioclase has been decomposed to completeness. Autochthonous light minerals quartz, chalcedony (carnelian), and calcite are exclusive to the RKF, where silcretes and calcretes evolved in those stratigraphic units which in the OKF only brought about Ca, Fe and Ti anomalies. The OKF have a significant edge over the RKF in terms of kaolin quality and kaolin exploitation (providing less mechanical wear on LHD [load–haul–dump machinery] machinery). Allochthonous phyllosilicates have a more widespread occurrence in the RKF with muscovite, biotite and chlorite most common in the lowermost kaolin beds. By quality there is not much difference among the autochthonous phyllosilicates of the OKF and RKF. Kaolinite-group minerals, illite, smectite, and an illite–smectite mixed-layer are present in both types, but kaolinite-group minerals prevail in the OKF, with a downward-increasing trend of dickite. By contrast the amount of smectite and smectite–illite mixed layers increases at the expense of kaolinite upward in the stratigraphy. The evolution of the kaolin fan deposits can be subdivided into six stages. Each stage is representative of a peculiar process which translates into concentration, preservation and destruction of kaolin: stage 1 weathering and the formation of a kaolin regolith (constructive), stage 2 transport, deposition synsedimentary to early-diagenetic kaolinization (constructive + preserving), stage 3 synsedimentary to early-diagenetic smectitization of kaolin (faciesbound Pb mineralization only in the RKF) (preserving + destructive), stage 4 late-diagenetic kaolinization and formation of dickite (preserving + constructive) (not in RKF), stage 5 epigenetic unconformity-related Cu–Ag–Ni–As–Ba mineralization (vaguely expressed in the OKF) (preserving), and stage 6 unroofing, erosion and redeposition of kaolin (only in the OKF) (destructive). During the study a PIMA device has proven in this type of kaolin deposit to be an efficacious tool for capturing digital data in the field of exploitation and exploration of industrial minerals for the identification and quantification of clay minerals (quality control)

    Contamination Assessment of Toxic Elements in River Sediments from Baia Mare, Romania—Extreme Pollution from Mining Activities

    Get PDF
    Sediment samples from the Săsar River and its main tributaries were analyzed for their potentially toxic elements at the site of the Romplumb metallurgical company and near the well-known Pb-Zn-Cu epithermal deposit of Baia Sprie located in the Neogene volcanic chain of the Eastern Carpathians, Romania. The average metal concentrations arranged in order of decreasing abundance are as follows (mg·kg−1): Mn (4098) > Zn (2093) > Pb (918) > Cu (489) > As (160) > Cr (37.51) > Ni (30.25) > Co (28.13) > Cd (9.72) > Hg (1.81). Several pollution indices were successfully used to assess the degree of contamination and ecological risk. The majority of sampling sites indicate high degrees of pollution, with two major hotspots identified. There are further sources, such as the Șuior (Pb-Zn-Au) and Săsar (Au-Ag) epithermal deposits, Cuprom company, and BozĂąnta tailing ponds, identified as contaminants. The Baia Mare mining district is causing a serious threat to the aquatic systems in the region, and it can be taken as a reference area for the human impact derived from the mining of mineral deposits of Au-Ag-Cu-Pb-Zn. It is imperative to reduce ecological risks and thereby protect the population living within this abandoned mining area

    A Natural GMS Laboratory (Granulometry-Morphometry-Situmetry): Geomorphological-Sedimentological-Mineralogical Terrain Analysis Linked to Coarse-Grained Siliciclastic Sediments at the Basement-Foreland Boundary (SE Germany)

    Get PDF
    The “natural GMS laboratory” (granulometry-morphometry-situmetry) is located within the Variscan Basement in SE Germany (Fichtelgebirge Mts.), which is uplifted relative to its Permo-Mesozoic foreland along a deep-seated lineamentary fault zone. This transitional study area is crossed by straight to low drainage systems in the basement, turning meandering channel systems into high sinuosity when entering the foreland. Due to its good geological coverage, the entire region is subjected to an advanced-level terrain analysis and completed with a sedimentological study focusing on the GMS tool. Unlike many applications in the past, the three components of the GMS tool that are of almost equal value ought to be used in combination and not as stand-alone procedures so as to be integrated into other near-surface geoscientific methods, e.g., sediment petrography. The strong points of granulometry of coarse-grained/gravel-sized sediments are its extension into the smaller sand and clay grain size intervals using the sorting, mean and/or median values for an environmental analysis. Morphometry can be linked to the compositional geosciences, e.g., mineralogy and geochemistry. The grain shape is intimately connected with the lithology, providing options from triaxial measuring of the lithoclast to the digital image analysis. It is a favorable tool to supplement the provenance of lithoclasts. Situmetry is the key element of hydrodynamic research and directly builds upon its sister methods. Its applications and numerical approaches are useful for the identification and quantification of physical land-forming processes. It is the fan sharpness and the orientation of lithoclasts relative to the direction of the talweg and in relation cross-sectional valley features that integrate the GMS tool into geological and geomorphological mapping, both of which result in a digital terrain model. Horizontal rose diagrams are useful for the upper reaches of drainage systems, be they of alluvial or non-alluvial types, and vertical ones for alluvial channels in the distal and proximal foreland where stacked patterns of depositional terraces are of widespread occurrence. In general, the GMS tool can be applied to sedimentological, geomorphological, petrographic and tectonic objects in basements and foreland basins; in applied geosciences, it is suitable for the identification of mineral resources and of areas vulnerable to geohazards, and in genetic geosciences for the discrimination of supergene chemical and physical depositional and land-forming processes

    Micro-Raman—a tool for the heavy mineral analysis of gold placer-type deposits (Pianu Valley, Romania)

    Get PDF
    In the current study, different heavy minerals typical of gold placer deposits were identified by means of micro-Raman spectroscopy, and their chemical composition analyzed and discussed (garnet, kyanite, staurolite, zircon, allanite, monazite, xenotime, rutile, anatase, cassiterite, titanite, barite). Even complex solid solution series, such as those of garnets, can be deciphered with the aid of systematic trends observed in Raman line frequencies. The vi mode in garnets will shift from high to low frequencies as a function of the ionic radius of the X2+ cation, from Mg2+, to Fe2+ and Mn2+, while the presence of Ca2+ will make the band to be shifted strongly to even lower wavenumbers. This approach has successfully been taken to differentiate between polymorph triplets such as kyanite-sillimanite-andalusite and rutile-anatase-brookite. Minerals under consideration with high contents of REE, U and Th are affected by intensive metamictization, particularly zircon and titanite. Raman peak features, such as shape, symmetry and intensity, respond to this radiation damage of the lattice and enable fine-tuning of these heavy minerals, such as in the case of fluorite (fetid fluorite). © 2020, MDPI AG. All rights reserved

    Internationale Klassifikation von Gesteinen nach pedologischen Gesichtspunkten

    Get PDF
    Im Rahmen des europĂ€ischen eSOTER Projekts (www.esoter.net) werden neue Me-thoden fĂŒr die bodenkundlich ausgerichtete Abgrenzung von Landschaften mit GIS-MoÂŹdellen entwickelt. Diese basieren im Wesentlichen auf digitalen Relief- und Lithologiedaten. Der Schwerpunkt der BGR-Arbeiten liegt auf der einheitlichen Erfas-sung und Darstellung von GesteinsinformaÂŹtionen nach pedologischen Aspekten. Mit diesen AktivitĂ€ten unterstĂŒtzt die BGR auch ein Projekt des globalen UmweltĂŒberwa-chungssystems GEOSS (Task „Global Soil Data“). Die BGR stellt nunmehr eine Über-arbeitung der FAO-AusgangsgesteinsklassiÂŹfikation zur Diskussion

    Regional myocardial function after intracoronary bone marrow cell injection in reperfused anterior wall infarction - a cardiovascular magnetic resonance tagging study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Trials have brought diverse results of bone marrow stem cell treatment in necrotic myocardium. This substudy from the Autologous Stem Cell Transplantation in Acute Myocardial Infarction trial (ASTAMI) explored global and regional myocardial function after intracoronary injection of autologous mononuclear bone marrow cells (mBMC) in acute anterior wall myocardial infarction treated with percutaneous coronary intervention.</p> <p>Methods</p> <p>Cardiovascular magnetic resonance (CMR) tagging was performed 2-3 weeks and 6 months after revascularization in 15 patients treated with intracoronary stem cell injection (mBMC group) and in 13 controls without sham injection. Global and regional left ventricular (LV) strain and LV twist were correlated to cine CMR and late gadolinium enhancement (LGE).</p> <p>Results</p> <p>In the control group myocardial function as measured by strain improved for the global LV (6 months: -13.1 ± 2.4 versus 2-3 weeks: -11.9 ± 3.4%, p = 0.014) and for the infarct zone (-11.8 ± 3.0 versus -9.3 ± 4.1%, p = 0.001), and significantly more than in the mBMC group (inter-group p = 0.027 for global strain, respectively p = 0.009 for infarct zone strain). LV infarct mass decreased (35.7 ± 20.4 versus 45.7 ± 29.5 g, p = 0.024), also significantly more pronounced than the mBMC group (inter-group p = 0.034). LV twist was initially low and remained unchanged irrespective of therapy.</p> <p>Conclusions</p> <p>LGE and strain findings quite similarly demonstrate subtle differences between the mBMC and control groups. Intracoronary injection of autologous mBMC did not strengthen regional or global myocardial function in this substudy.</p> <p>Trial registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00199823">NCT00199823</a></p
    • 

    corecore