4 research outputs found

    The Effectiveness of Noninvasive Positive Pressure Ventilation in Subarachnoid Pleural Fistula: A Case Report and Literature Review

    No full text
    Subarachnoid pleural fistula (SPF) is an aberrant communication between the pleural cavity and subarachnoid space, resulting in uncontrolled cerebrospinal fluid drainage. The negative pressure of the pleural cavity creates a continuous suctioning effect, thereby impeding the spontaneous closure of these fistulas. Dural tears or punctures in cardiothoracic procedures, spinal operations, and trauma are known to cause such abnormal communications. Failure to recognize this entity may result in sudden neurological or respiratory complications. Hence, a high index of suspicion is required for early diagnosis and prompt management. Noninvasive positive pressure ventilation has been described to be effective in managing such fistulas, thus mitigating the high morbidity associated with exploratory surgery for primary repair. Herein, we describe the typical presentation of SPF and the clinical course, treatment, and follow-up of a patient who sustained SPF following anterior thoracic spinal surgery

    Proteomic Signatures of Healthy Intervertebral Discs From Organ Donors: A Comparison With Previous Studies on Discs From Scoliosis, Animals, and Trauma

    No full text
    Objective To catalog and characterize the proteome of normal human intervertebral disc (IVD). Methods Nine magnetic resonance imaging (MRI) normal IVDs were harvested from 9 different brain dead yet alive voluntary organ donors and were subjected to electrospray ionization-liquid chromatography tandem mass spectrometry (ESI-LC-MS/MS) acquisition. Results A total of 1,116 proteins were identified. Functional enrichment analysis tool DAVID ver. 6.8 categorized: extracellular proteins (38%), intracellular (31%), protein-containing complex (13%), organelle (9%), membrane proteins (6%), supramolecular complex (2%), and 1% in the cell junction. Molecular function revealed: binding activity (42%), catalytic activity (31%), regulatory activity (14%), and structural activity (7%). Molecular transducer, transporter, and transcription regulator activity together contributed to 6%. A comparison of the proteins obtained from this study to others in the literature showed a wide variation in content with only 3% of bovine, 5% of murine, 54% of human scoliotic discs, and 10.2% of discs adjacent to lumbar burst fractures common to our study of organ donors. Between proteins reported in scoliosis and lumbar fracture patients, only 13.51% were common, further signifying the contrast amongst the various MRI normal IVD samples. Conclusion The proteome of “healthy” human IVDs has been defined, and our results show that proteomic data on IVDs obtained from scoliosis, fracture patients, and cadavers lack normal physiological conditions and should not be used as biological controls despite normal MRI findings. This questions the validity of previous studies that have used such discs as controls for analyzing the pathomechanisms of disc degeneration
    corecore