10 research outputs found

    A Real-Time Comparison of Four Particulate Matter Size Fractions in the Personal Breathing Zone of Paris Subway Workers: A Six-Week Prospective Study.

    Get PDF
    We developed a Bayesian spline model for real-time mass concentrations of particulate matter (PM10, PM2.5, PM1, and PM0.3) measured simultaneously in the personal breathing zone of Parisian subway workers. The measurements were performed by GRIMM, a gravimetric method, and DiSCmini during the workers' work shifts over two consecutive weeks. The measured PM concentrations were analyzed with respect to the working environment, the underground station, and any specific events that occurred during the work shift. Overall, PM0.3 concentrations were more than an order of magnitude lower compared to the other PM concentrations and showed the highest temporal variation. The PM2.5 levels raised the highest exposure concern: 15 stations out of 37 had higher mass concentrations compared to the reference. Station PM levels were not correlated with the annual number of passengers entering the station, the year of station opening or renovation, or the number of platforms and tracks. The correlation with the number of station entrances was consistently negative for all PM sizes, whereas the number of correspondence concourses was negatively correlated with PM0.3 and PM10 levels and positively correlated with PM1 and PM2.5 levels. The highest PM10 exposure was observed for the station platform, followed by the subway cabin and train, while ticket counters had the highest PM0.3, PM1, and PM2.5 mass concentrations. We further found that compared to gravimetric and DiSCmini measurements, GRIMM results showed some discrepancies, with an underestimation of exposure levels. Therefore, we suggest using GRIMM, calibrated by gravimetric methods, for PM sizes above 1μm, and DiSCmini for sizes below 700 nm

    Spin-resolved band structure of a densely packed Pb monolayer on Si(111)

    Get PDF
    Monolayer structures of Pb on Si(111) attracted recently considerable interest as superconductivity was found in these truly two-dimensional (2D) structures. In this study, we analyzed the electronic surface band structure of the so-called striped incommensurate Pb phase with 43 ML coverage by means of spin-resolved photoemission spectroscopy. Our results fully agree with density functional theory calculations done by Ren et al. [Phys. Rev. B 94, 075436 (2016)1098-012110.1103/PhysRevB.94.075436]. We observe a local Zeeman-type splitting of a fully occupied and spin-polarized surface band at the K̄3 points. The growth of this densely packed Pb structure results in the formation of imbalanced rotational domains, which triggered the detection of C3v symmetry forbidden spin components for surface states around the Fermi energy. Moreover, the Fermi surface of the metallic surface state of this phase is Rashba spin split and revealed a pronounced warping. However, the 2D nesting vectors are incommensurate with the atomic structure, thus keeping this system rather immune against charge density wave formation and possibly enabling a superconducting behavior. © 2017 American Physical Society

    Electronic structure and excitations on clean and nanostructured metal surfaces

    No full text
    11 páginas, 11 figuras.We present a brief overview of recent studies and new theoretical results for electron-phonon interaction in the [`(Y)]Y surface states on FCC(110) noble metal surfaces as well as in surface and quantum-well states of thin films. We discuss the oscillations of electron-phonon coupling parameter λ and the respective contribution to the lifetime broadening of these states. We analyse the effect of spin-orbit splitting of surface states on an electron-electron contribution to lifetimes of excited electrons (holes). Oscillations of the electron-electron contribution and quadratic dependence of the linewidth on energy is discussed for ultrathin Pb(111) films.We gratefully acknowledge partial support by the Department of Education of the Basque Country Governement, the University of the Basque Country (project GV-UPV/EHU, grant IT-366-07), and Ministerio de Ciencia y Tecnología (grant FIS2007-66711-C02-01).Peer reviewe
    corecore