75 research outputs found

    Neuropathic-like symptoms and the association with joint-specific function and quality of life in patients with hip and knee osteoarthritis

    Get PDF
    Objective There is an association between osteoarthritis-related pain severity and function, yet clear evidence about the sole influence of neuropathic-like symptoms on joint function and health-related quality of life (HRQoL) is lacking. Previous studies among knee OA patients show an association between neuropathic-like symptoms, lower functional status and lower quality of life, however analyses were unadjusted or had limited adjustment for influential covariates like pain intensity. The aim of this study was therefore to determine the influence of neuropathic-like symptoms-adjusted for multiple influential covariates-on joint-specific function and HRQoL in hip and knee OA patients. Methods In this observational study 255 patients (117 with hip OA and 138 with knee OA) completed the modified painDETECT questionnaire (mPDQ) to identify subjects with neuropathic-like symptoms (mPDQ score>12, possible neuropathic pain [NP] phenotype). The WOMAC and the RAND-36 were used to asses respectively function and HRQoL. Results were adjusted stepwise for age, sex and BMI (Model 1); back disorder, painful body regions, comorbidities and previous surgery (Model 2); and pain intensity and analgesic usage (Model 3). Results A possible NP phenotype was experienced by 37% of hip and 46% of knee OA patients. Final model 3 analysis revealed that hip OA patients with neuropathic-like symptoms scored significantly lower on pain-related aspects of HRQoL (GRAND-36 bodily pain: 6.8 points, p = 0.047) compared to patients with the unlikely NP phenotype. In knee OA patients, a possible NP phenotype was associated with diminished joint function (AWOMAC domains ranging 7.1 to 10.5 points, p Conclusion Neuropathic-like symptoms deteriorate the subjective rating of pain-related quality of life in hip OA patients and significantly influence function in knee OA patients

    Neurocognition in adults with intracranial tumors:Does location really matter?

    Get PDF
    OBJECTIVE: As preservation of cognitive functioning increasingly becomes important in the light of ameliorated survival after intracranial tumor treatments, identification of eloquent brain areas would enable optimization of these treatments. METHODS: This cohort study enrolled adult intracranial tumor patients who received neuropsychological assessments pre-irradiation, estimating processing speed, verbal fluency and memory. Anatomical magnetic resonance imaging scans were used for multivariate voxel-wise lesion-symptom predictions of the test scores (corrected for age, gender, educational level, histological subtype, surgery, and tumor volume). Potential effects of histological and molecular subtype and corresponding WHO grades on the risk of cognitive impairment were investigated using Chi square tests. P-values were adjusted for multiple comparisons (p < .001 and p < .05 for voxel- and cluster-level, resp.). RESULTS: A cohort of 179 intracranial tumor patients was included [aged 19-85 years, median age (SD) = 58.46 (14.62), 50% females]. In this cohort, test-specific impairment was detected in 20-30% of patients. Higher WHO grade was associated with lower processing speed, cognitive flexibility and delayed memory in gliomas, while no acute surgery-effects were found. No grading, nor surgery effects were found in meningiomas. The voxel-wise analyses showed that tumor locations in left temporal areas and right temporo-parietal areas were related to verbal memory and processing speed, respectively. INTERPRETATION: Patients with intracranial tumors affecting the left temporal areas and right temporo-parietal areas might specifically be vulnerable for lower verbal memory and processing speed. These specific patients at-risk might benefit from early-stage interventions. Furthermore, based on future validation studies, imaging-informed surgical and radiotherapy planning could further be improved

    Susceptibility to chronic mucus hypersecretion, a genome wide association study

    Get PDF
    Background: Chronic mucus hypersecretion (CMH) is associated with an increased frequency of respiratory infections, excess lung function decline, and increased hospitalisation and mortality rates in the general population. It is associated with smoking, but it is unknown why only a minority of smokers develops CMH. A plausible explanation for this phenomenon is a predisposing genetic constitution. Therefore, we performed a genome wide association (GWA) study of CMH in Caucasian populations. Methods: GWA analysis was performed in the NELSON-study using the Illumina 610 array, followed by replication and meta-analysis in 11 additional cohorts. In total 2,704 subjects with, and 7,624 subjects without CMH were included, all current or former heavy smokers (≥20 pack-years). Additional studies were performed to test the functional relevance of the most significant single nucleotide polymorphism (SNP). Results: A strong association with CMH, consistent across all cohorts, was observed with rs6577641 (p = 4.25x10-6, OR = 1.17), located in intron 9 of the special AT-rich sequence-binding protein 1 locus (SATB1) on chromosome 3. The risk allele (G) was associated with higher mRNA expression of SATB1 (4.3x10 -9) in lung tissue. Presence of CMH was associated with increased SATB1 mRNA expression in bronchial biopsies from COPD patients. SATB1 expression was induced during differentiation of primary human bronchial epithelial cells in culture. Conclusions: Our findings, that SNP rs6577641 is associated with CMH in multiple cohorts and is a cis-eQTL for SATB1, together with our additional observation that SATB1 expression increases during epithelial differentiation provide suggestive evidence that SATB1 is a gene that affects CMH

    Skewed X-inactivation is common in the general female population

    Get PDF
    X-inactivation is a well-established dosage compensation mechanism ensuring that X-chromosomal genes are expressed at comparable levels in males and females. Skewed X-inactivation is often explained by negative selection of one of the alleles. We demonstrate that imbalanced expression of the paternal and maternal X-chromosomes is common in the general population and that the random nature of the X-inactivation mechanism can be sufficient to explain the imbalance. To this end, we analyzed blood-derived RNA and whole-genome sequencing data from 79 female children and their parents from the Genome of the Netherlands project. We calculated the median ratio of the paternal over total counts at all X-chromosomal heterozygous single-nucleotide variants with coverage ≥10. We identified two individuals where the same X-chromosome was inactivated in all cells. Imbalanced expression of the two X-chromosomes (ratios ≤0.35 or ≥0.65) was observed in nearly 50% of the population. The empirically observed skewing is explained by a theoretical model where X-inactivation takes place in an embryonic stage in which eight cells give rise to the hematopoietic compartment. Genes escaping X-inactivation are expressed from both alleles and therefore demonstrate less skewing than inactivated genes. Using this characteristic, we identified three novel escapee genes (SSR4, REPS2, and SEPT6), but did not find support for many previously reported escapee genes in blood. Our collective data suggest that skewed X-inactivation is common in the general population. This may contribute to manifestation of symptoms in carriers of recessive X-linked disorders. We recommend that X-inactivation results should not be used lightly in the interpretation of X-linked variants

    Method for Measurement of Peroxisomal Very Long-Chain Fatty Acid Beta-Oxidation and De Novo C26:0 Synthesis Activity in Living Cells Using Stable-Isotope Labeled Docosanoic Acid

    No full text
    Peroxisomes are present in virtually every eukaryotic cell type with the exception of the mature erythrocyte. In higher eukaryotes, one of the main functions of peroxisomes is lipid metabolism by means of beta-oxidation of very long-chain fatty acids (VLCFA; ≥22 carbon atoms). A dysfunction in peroxisomal VLCFA beta-oxidation results in elevated VLCFA levels in cells, tissue, and plasma. Here, we describe a straightforward and sensitive method to measure peroxisomal beta-oxidation capacity in living cells using stable-isotope labeled docosanoic acid (D3-C22:0

    Enzymatic characterization of ELOVL1, a key enzyme in very long-chain fatty acid synthesis

    No full text
    X-linked adrenoleukodystrophy (X-ALD) is a neurometabolic disease that is caused by mutations in the ABCD1 gene. ABCD1 protein deficiency impairs peroxisomal very long-chain fatty acid (VLCFA) degradation resulting in increased cytosolic VLCFA-CoA levels, which are further elongated by the VLCFA-specific elongase, ELOVL1. In adulthood, X-ALD most commonly manifests as a gradually progressive myelopathy (adrenomyeloneuropathy; AMN) without any curative or disease modifying treatments. We recently showed that bezafibrate reduces VLCFA accumulation in X-ALD fibroblasts by inhibiting ELOVL1. Although, in a clinical trial, bezafibrate was unable to lower VLCFA levels in plasma or lymphocytes in X-ALD patients, inhibition of ELOVL1 remains an attractive therapeutic option. In this study, we investigated the kinetic characteristics of ELOVL1 using X-ALD fibroblasts and microsomal fractions from ELOVL1 over-expressing HEK293 cell lines and analyzed the inhibition kinetics of a series of fibrates. Our data show that the CoA esters of bezafibrate and gemfibrozil reduce chain elongation by specifically inhibiting ELOVL1. These fibrates can therefore serve as lead compounds for the development of more potent and more specific inhibitors for ELOVL

    Prerequisites for data-based decision making in the classroom: research evidence and practical illustrations

    Get PDF
    Data-based decision making can lead to increased student learning. The desired effects of increased student learning can only be realized if data-based decision making is implemented successfully. Therefore, a systematic literature review was conducted to identify prerequisites of such successful implementation. Furthermore, focus group meetings were conducted with experts and practitioners to verify and illustrate the findings from the review. Several prerequisites of successful data use in the classroom that are supported by a substantial evidence base were identified, including teacher collaboration around the use of data, data literacy, and leadership

    Comparison of the Diagnostic Performance of C26:0-Lysophosphatidylcholine and Very Long-Chain Fatty Acids Analysis for Peroxisomal Disorders

    No full text
    Peroxisomes are subcellular organelles that are involved in various important physiological processes such as the oxidation of fatty acids and the biosynthesis of bile acids and plasmalogens. The gold standard in the diagnostic work-up for patients with peroxisomal disorders is the analysis of very long-chain fatty acid (VLCFA) levels in plasma. Alternatively, C26:0-lysophosphatidylcholine (C26:0-LPC) can be measured in dried blood spots (DBS) using liquid chromatography tandem mass spectrometry (LC-MS/MS); a fast and easy method but not yet widely used. Currently, little is known about the correlation of C26:0-LPC in DBS and C26:0-LPC in plasma, and how C26:0-LPC analysis compares to VLCFA analysis in diagnostic performance. We investigated the correlation between C26:0-LPC levels measured in DBS and plasma prepared from the same blood sample. For this analysis we included 43 controls and 38 adrenoleukodystrophy (ALD) (21 males and 17 females) and 33 Zellweger spectrum disorder (ZSD) patients. In combined control and patient samples there was a strong positive correlation between DBS C26:0-LPC and plasma C26:0-LPC, with a Spearman’s rank correlation coefficient of r (114) = 0.962, p < 0.001. These data show that both plasma and DBS are suitable to determine blood C26:0-LPC levels and that there is a strong correlation between C26:0-LPC levels in both matrices. Following this, we investigated how VLCFA and C26:0-LPC analysis compare in diagnostic performance for 67 controls, 26 ALD males, 19 ALD females, and 35 ZSD patients. For C26:0-LPC, all ALD and ZSD samples had C26:0-LPC levels above the upper limit of the reference range. For C26:0, one out of 67 controls had C26:0 levels above the upper reference range. For 1 out of 26 (1/26) ALD males, 1/19 ALD females and 3/35 ZSD patients, the C26:0 concentration was within the reference range. The C26:0/C22:0 ratio was within the reference range for 0/26 ALD males, 1/19 ALD females and 2/35 ZSD patients. Overall, these data demonstrate that C26:0-LPC analysis has a superior diagnostic performance compared to VLCFA analysis (C26:0 and C26:0/C22:0 ratio) in all patient groups. Based on our results we recommend implementation of C26:0-LPC analysis in DBS and/or plasma in the diagnostic work-up for peroxisomal disorders
    • …
    corecore