5,740 research outputs found

    Avatar: A Time- and Space-Efficient Self-Stabilizing Overlay Network

    Full text link
    Overlay networks present an interesting challenge for fault-tolerant computing. Many overlay networks operate in dynamic environments (e.g. the Internet), where faults are frequent and widespread, and the number of processes in a system may be quite large. Recently, self-stabilizing overlay networks have been presented as a method for managing this complexity. \emph{Self-stabilizing overlay networks} promise that, starting from any weakly-connected configuration, a correct overlay network will eventually be built. To date, this guarantee has come at a cost: nodes may either have high degree during the algorithm's execution, or the algorithm may take a long time to reach a legal configuration. In this paper, we present the first self-stabilizing overlay network algorithm that does not incur this penalty. Specifically, we (i) present a new locally-checkable overlay network based upon a binary search tree, and (ii) provide a randomized algorithm for self-stabilization that terminates in an expected polylogarithmic number of rounds \emph{and} increases a node's degree by only a polylogarithmic factor in expectation

    Towards agent-based crowd simulation in airports using games technology

    Get PDF
    We adapt popular video games technology for an agent-based crowd simulation in an airport terminal. To achieve this, we investigate the unique traits of airports and implement a virtual crowd by exploiting a scalable layered intelligence technique in combination with physics middleware and a socialforces approach. Our experiments show that the framework runs at interactive frame-rate and evaluate the scalability with increasing number of agents demonstrating navigation behaviour

    Healthiness from Duality

    Get PDF
    Healthiness is a good old question in program logics that dates back to Dijkstra. It asks for an intrinsic characterization of those predicate transformers which arise as the (backward) interpretation of a certain class of programs. There are several results known for healthiness conditions: for deterministic programs, nondeterministic ones, probabilistic ones, etc. Building upon our previous works on so-called state-and-effect triangles, we contribute a unified categorical framework for investigating healthiness conditions. We find the framework to be centered around a dual adjunction induced by a dualizing object, together with our notion of relative Eilenberg-Moore algebra playing fundamental roles too. The latter notion seems interesting in its own right in the context of monads, Lawvere theories and enriched categories.Comment: 13 pages, Extended version with appendices of a paper accepted to LICS 201

    Can virtual nature improve patient experiences and memories of dental treatment? A study protocol for a randomized controlled trial

    Get PDF
    Background Dental anxiety and anxiety-related avoidance of dental care create significant problems for patients and the dental profession. Distraction interventions are used in daily medical practice to help patients cope with unpleasant procedures. There is evidence that exposure to natural scenery is beneficial for patients and that the use of virtual reality (VR) distraction is more effective than other distraction interventions, such as watching television. The main aim of this randomized controlled trial is to determine whether the use of VR during dental treatment can improve the overall dental experience and recollections of treatment for patients, breaking the negative cycle of memories of anxiety leading to further anxiety, and avoidance of future dental appointments. Additionally, the aim is to test whether VR benefits dental patients with all levels of dental anxiety or whether it could be especially beneficial for patients suffering from higher levels of dental anxiety. The third aim is to test whether the content of the VR distraction can make a difference for its effectiveness by comparing two types of virtual environments, a natural environment and an urban environment. Methods/design The effectiveness of VR distraction will be examined in patients 18 years or older who are scheduled to undergo dental treatment for fillings and/or extractions, with a maximum length of 30 minutes. Patients will be randomly allocated into one of three groups. The first group will be exposed to a VR of a natural environment. The second group will be exposed to a VR of an urban environment. A third group consists of patients who receive standard care (control group). Primary outcomes relate to patients’ memories of the dental treatment one week after treatment: (a) remembered pain, (b) intrusive thoughts and (c) vividness of memories. Other measures of interest are the dental experience, the treatment experience and the VR experience. Trial registration Current Controlled Trials ISRCTN4144280

    Combined Global and Local Search for the Falsification of Hybrid Systems

    Full text link
    In this paper we solve the problem of finding a trajectory that shows that a given hybrid dynamical system with deterministic evolution leaves a given set of states considered to be safe. The algorithm combines local with global search for achieving both efficiency and global convergence. In local search, it exploits derivatives for efficient computation. Unlike other methods for falsification of hybrid systems with deterministic evolution, we do not restrict our search to trajectories of a certain bounded length but search for error trajectories of arbitrary length
    • …
    corecore