8 research outputs found

    The Italian Guidelines on Risk Classification and Management of Bridges: Applications and Remarks on Large Scale Risk Assessments

    Get PDF
    Bridges are essential for guaranteeing the functioning of transportation systems since their failure can cause serious threats to the safety, well-being and economy of modern communities, especially in emergency conditions. Following recent bridge failures, among which include the Morandi bridge in 2018, specific guidelines on risk classification and management, safety assessment and monitoring of existing bridges have been issued in Italy by the Minister of Infrastructure as a mandatory code. They pay particular attention to the evaluation of the residual life span of critical transportation infrastructure dating back to the 1950s and 1960s of the last century. Being a newly issued tool, the Guidelines need to be applied and tested in order to find possible drawbacks and to point out the main factors influencing their results. Therefore, in this study, after a short description of the Italian Guidelines, pointing out some differences with other approaches adopted worldwide, some advantages and disadvantages are discussed by an application to a bridge stock located in the Basilicata region (Italy). Data needed to apply the Guidelines are gathered by a purposely set up procedure that exploits existing databases on road infrastructure (OpenStreetMap) complemented by additional data retrieved by means of public image repositories (Google Street View). By accounting for the qualitative nature of the risk classification results obtained by applying the lower analysis levels of the Guidelines, a prioritization method is proposed for ranking bridges for higher assessment levels and possible interventions, as well as consequent funds allocation. The application shows that the Guidelines' approach tends to provide conservative results. In fact, even in case of bridges with low degradation levels, the final risk classification induces actions undertaken for preliminary or detailed assessment; thus, normal operation (with periodic inspections) would not be possible anymore

    Fragility curves of gravity-load designed RC buildings with regularity in plan

    No full text
    In this paper Fragility Curves (FCs) relevant to existing RC framed building types representative of the Italian building population designed only to vertical load and regular in-plan have been derived from an extensive campaign of non-linear dynamic analyses. In the generation of the FCs, damage states according to the EMS98 scale have been considered while the intensity measure has been defined by adopting an integral parameter, such as the Housner intensity. FCs have been generated by varying different parameters, including building age, number of storeys, presence and position of infill panels, plan dimensions, external beams stiffness and concrete strength. In order to verify the effectiveness of the damage prediction, comparisons were made between the results obtained from the proposed FCs with those deriving from both prominent fragility studies available in the technical literature and damage distributions observed in past earthquakes. Results show that damage grades obtained by adopting the proposed FCs are generally lower than those provided by the other approaches considered. A comparison with real damage data, shows that the proposed FCs generally estimate more severe damage distributions than those observed in past earthquakes, although they give lower differences with respect to the other approaches

    Experimental evaluation of drilling damage on the strength of cores extracted from RC buildings

    No full text
    Concrete strength evaluated from compression tests on cores is affected by several factors causing differences from the in-situ strength at the location from which the core specimen was extracted. Among the factors, there is the damage possibly occurring during the drilling phase that generally leads to underestimate the actual in-situ strength. In order to quantify this effect, in this study two wide datasets have been examined, including: (i)about 500 core specimens extracted from Reinforced Concrete existing structures, and (ii) about 600 cube specimens taken during the construction of new structures in the framework of routine acceptance control. The two experimental datasets have been compared in terms of compression strength and specific weight values, accounting for the main factors affecting a concrete property, that is type and amount of cement, aggregates' grading, type and maximum size of aggregates, water/cement ratio, placing and curing modality, concrete age. The results show that the magnitude of the strength reduction due to drilling damage is strongly affected by the actual properties of concrete, being inversely proportional to its strength. Therefore, the application of a single value of the correction coefficient, as generally suggested in the technical literature and in structural codes, appears inappropriate. A set of values of the drilling damage coefficient is suggested as a function of the strength obtained from compressive tests on cores

    Procedures and experiences in the post-earthquake usability evaluation of ordinary buildings

    No full text
    One of the most critical issues in the post-earthquake emergency is assessing the usability of buildings in order to restart as soon as possible all the activities in the stricken area while permitting people to go back as safe as possible to their houses. Generally, this is made by means of surveys based on usability forms to be filled out by expert technicians. Different countries adopt different forms whose result in terms of usability is dependent essentially on building damage. The Italian approach accounts for, beyond the damage state, also the vulnerability of the building under examination. In this study, the data collected through the widespread survey performed in the aftermath of the L’Aquila (Italy) 2009 earthquake has been analysed, showing that some buildings judged as not usable although having null or very low damage. Therefore, the role of other causes, among which vulnerability, determining the negative usability outcome has been discussed out. Finally, a practical case faced by the authors during the usability survey in Emilia (Italy) after the 2012 seismic sequence highlights the role of vulnerability on the usability outcome
    corecore