7 research outputs found

    Design, Development and Validation of a Portable Gas Sensor Module: A Facile Approach for Monitoring Greenhouse Gases

    No full text
    We report the unique design and prototype of a portable gas sensor module for monitoring greenhouse gases. The commercially available gas sensors (MQ-02, MQ-135, and TGS2602) were adopted in designing the module using Arduino Uno. Different locations in the city of Solapur, India (17.6599° N, 75.9064° E), were scanned for the usability of the developed prototype of the mobile gas sensor module. The choice of gas sensors in combination with Arduino Uno led to an excellent prototype for measuring the concentration of greenhouse gases, and therefore the wrong alarm for toxic gases. The prototype model and corresponding greenhouse gas concentrations (ppm) are described using an interplay of sensor design, software program, and greenhouse gases sites

    Silica Aerogel: Synthesis and Applications

    Get PDF
    Silica aerogels have drawn a lot of interest both in science and technology because of their low bulk density (up to 95% of their volume is air), hydrophobicity, low thermal conductivity, high surface area, and optical transparency. Aerogels are synthesized from molecular precursors by sol-gel processing. Special drying techniques must be applied to replace the pore liquid with air while maintaining the solid network. Supercritical drying is most common; however, recently developed methods allow removal of the liquid at atmospheric pressure after chemical modification of the inner surface of the gels, leaving only a porous silica network filled with air. Therefore, by considering the surprising properties of aerogels, the present review addresses synthesis of silica aerogels by the sol-gel method, as well as drying techniques and applications in current industrial development and scientific research

    Co2+ Substituted Spinel MgCuZn Ferrimagnetic Oxide: A Highly Versatile Electromagnetic Material via a Facile Molten Salt Route

    No full text
    We report on the electromagnetic properties of Co2+ substituted spinel MgCuZn ferrites developed via a facile molten salt synthesis (MSS) route. The choice of synthesis route in combination with cobalt substitution led to strong electromagnetic properties such as high saturation magnetization (i.e., 63 emu/g), high coercivity (17.86 gauss), and high initial permeability (2730), which are beneficial for the multilayer chip inductor (MLCI) application. In a typical process, the planned ferrites were synthesized at 800 °C using sodium chloride as a growth inhibitor, with dense morphology and irregularity in the monolithicity of the grains. The compositional analysis of as-prepared ferrite confirms the presence of desired elements with their proportion. The crystallite size (using X-ray diffraction (XRD) analysis) for different samples varies in the range of 49–51 nm. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis showcases the compact morphology of the developed samples, which is typical in the ferrite system. The dielectric properties (dielectric-loss and dielectric-constant) in the frequency range of 100Hz–1MHz suggest normal dielectric distribution according to interfacial polarization from Maxwell–Wagner. From the developed ferrites, upon comparison with a low dielectric loss with high permeability value, Mg-Cu-Zn ferrite with Co = 0.05 substitution proved to be a stronger material for MLCIs with high-performance applications
    corecore