82 research outputs found

    Response-theory for nonresonant hole burning: Stochastic dynamics

    Full text link
    Using non-linear response theory the time signals relevant for nonresonant spectral hole burning are calculated. The step-reponse function following the application of a high amplitude ac field (pump) and an intermediate waiting period is shown to be the sum of the equilibrium integrated response and a modification due to the preparation via ac irradiation. Both components are calculated for a class of stochastic dipole reorientation models. The results indicate that the method can be used for a clearcut distinction of homogeneously and heterogeneously broadened susceptibilities as they occur in the relaxation of supercooled liquids or other disordered materials. This is because only in the heterogeneous case is a frequency selective modification of the response possible.Comment: revised version, 7 pages, 2 figure

    Out-of-equilibrium dynamics in a gaussian trap model

    Full text link
    The violations of the fluctuation-dissipation theorem are analyzed for a trap model with a gausssian density of states. In this model, the system reaches thermal equilibrium for long times after a quench to any finite temperature and therefore all aging effect are of a transient nature. For not too long times after the quench it is found that the so-called fluctuation-dissipation ratio tends to a non-trivial limit, thus inicating the possibility for the definition of a time scale dependent effective temperature. However, different definitions of the effective temperature yield distinct results. In particular plots of the integrated response versus the correlation function strongly depend on the way they are constructed. Also the definition of effective temperatures in the frequency domain is not unique for the model considered. This may have some implications for the interpretation of results from computer simulations and experimental determinations of effective temperatures.Comment: Proceedings of the workshop on non-equilibrium phenomena in supercooled fluids, glasses and amorphous materials (17-22 September, Pisa

    Nonlinear response theory for Markov processes: Simple models for glassy relaxation

    Full text link
    The theory of nonlinear response for Markov processes obeying a master equation is formulated in terms of time-dependent perturbation theory for the Green's functions and general expressions for the response functions up to third order in the external field are given. The nonlinear response is calculated for a model of dipole reorientations in an asymmetric double well potential, a standard model in the field of dielectric spectroscopy. The static nonlinear response is finite with the exception of a certain temperature T0T_0 determined by the value of the asymmetry. In a narrow temperature range around T0T_0, the modulus of the frequency-dependent cubic response shows a peak at a frequency on the order of the relaxation rate and it vanishes for both, low frequencies and high frequencies. At temperatures at which the static response is finite (lower and higher than T0T_0), the modulus is found to decay monotonously from the static limit to zero at high frequencies. In addition, results of calculations for a trap model with a Gaussian density of states are presented. In this case, the cubic response depends on the specific dynamical variable considered and also on the way the external field is coupled to the kinetics of the model. In particular, a set of different dynamical variables is considered that gives rise to identical shapes of the linear susceptibility and only to different temperature dependencies of the relaxation times. It is found that the frequency dependence of the nonlinear response functions, however, strongly depends on the particular choice of the variables. The results are discussed in the context of recent theoretical and experimental findings regarding the nonlinear response of supercooled liquids and glasses.Comment: 23 pages, 10 figure

    Dynamic force spectroscopy: analysis of reversible bond-breaking dynamics

    Full text link
    The problem of diffusive bond-dissociation in a double well potential under application of an external force is scrutinized. We compute the probability distribution of rupture forces and present a detailed discussion of the influence of finite rebinding probabilities on the dynamic force spectrum. In particular, we focus on barrier crossing upon extension, i.e. under linearly increased load, and upon relaxation starting from completely separated bonds. For large loading rates the rupture force and the rejoining force depend on the loading rate in the expected manner determined by the shape of the potential. For small loading rates the mean forces obtained from pull and relax modes approach each other as the system reaches equilibrium. We investigate the dependence of the rupture force distributions and mean rupture forces on external parameters like cantilever stiffness and influence of a soft linker. We find that depending on the implementation of a soft linker the equilibrium rupture force is either unaffected by the presence of the linker or changes in a predictable way with the linker-compliance. Additionally, we show that it is possible to extract the equilibrium constant of the on- and off-rates from the determination of the equilibrium rupture forces.Comment: 32 pages, 14 figure

    Dynamic heterogeneities in the out-of-equilibrium dynamics of simple spherical spin models

    Full text link
    The response of spherical two-spin interaction models, the spherical ferromagnet (s-FM) and the spherical Sherrington-Kirkpatrick (s-SK) model, is calculated for the protocol of the so-called nonresonant hole burning experiment (NHB) for temperatures below the respective critical temperatures. It is shown that it is possible to select dynamic features in the out-of-equilibrium dynamics of both models, one of the hallmarks of dynamic heterogeneities. The behavior of the s-SK model and the s-FM in three dimensions is very similar, showing dynamic heterogeneities in the long time behavior, i.e. in the aging regime. The appearence of dynamic heterogeneities in the s-SK model explicitly demonstrates that these are not necessarily related to {\it spatial} heterogeneities. For the s-FM it is shown that the nature of the dynamic heterogeneities changes as a function of dimensionality. With incresing dimension the frequency selectivity of the NHB diminishes and the dynamics in the mean-field limit of the s-FM model becomes homogeneous.Comment: 16 pages, 8 figure

    Rotational Correlation Functions of Single Molecules

    Full text link
    Single molecule rotational correlation functions are analyzed for several reorientation geometries. Even for the simplest model of isotropic rotational diffusion our findings predict non-exponential correlation functions to be observed by polarization sensitive single molecule fluorescence microscopy. This may have a deep impact on interpreting the results of molecular reorientation measurements in heterogeneous environments.Comment: 5 pages, 4 figure

    Reply to ``Comment on `Hole-burning experiments within glassy models with infinite range interactions' ''

    Full text link
    This is a reply to the comments by Richter and Chamberlin, and Diezemann and Bohmer to our paper (Phys. Rev. Lett. 85, 3448 (2000)). As further evidence for the claims in this Letter, we here reproduce the nonlinear spectral hole-burning experimental protocol in an equilibrated fully connected spin-glass model and we exhibit frequency selectivity, together with a shift in the base of the spectral hole.Comment: 1 page, two figures, to appear in Phys. Rev. Let

    Dielectric and thermal relaxation in the energy landscape

    Full text link
    We derive an energy landscape interpretation of dielectric relaxation times in undercooled liquids, comparing it to the traditional Debye and Gemant-DiMarzio-Bishop pictures. The interaction between different local structural rearrangements in the energy landscape explains qualitatively the recently observed splitting of the flow process into an initial and a final stage. The initial mechanical relaxation stage is attributed to hopping processes, the final thermal or structural relaxation stage to the decay of the local double-well potentials. The energy landscape concept provides an explanation for the equality of thermal and dielectric relaxation times. The equality itself is once more demonstrated on the basis of literature data for salol.Comment: 7 pages, 3 figures, 41 references, Workshop Disordered Systems, Molveno 2006, submitted to Philosophical Magazin

    Nonequilibrium Linear Response for Markov Dynamics, II: Inertial Dynamics

    Full text link
    We continue our study of the linear response of a nonequilibrium system. This Part II concentrates on models of open and driven inertial dynamics but the structure and the interpretation of the result remain unchanged: the response can be expressed as a sum of two temporal correlations in the unperturbed system, one entropic, the other frenetic. The decomposition arises from the (anti)symmetry under time-reversal on the level of the nonequilibrium action. The response formula involves a statistical averaging over explicitly known observables but, in contrast with the equilibrium situation, they depend on the model dynamics in terms of an excess in dynamical activity. As an example, the Einstein relation between mobility and diffusion constant is modified by a correlation term between the position and the momentum of the particle
    corecore