44 research outputs found

    A Survey of Chloroplast Protein Kinases and Phosphatases in Arabidopsis thaliana

    Get PDF
    Protein phosphorylation is a major mode of regulation of metabolism, gene expression and cell architecture. In chloroplasts, reversible phosphorylation of proteins is known to regulate a number of prominent processes, for instance photosynthesis, gene expression and starch metabolism. The complements of the involved chloroplast protein kinases (cpPKs) and phosphatases (cpPPs) are largely unknown, except 6 proteins (4 cpPKs and 2 cpPPs) which have been experimentally identified so far. We employed combinations of programs predicting N-terminal chloroplast transit peptides (cTPs) to identify 45 tentative cpPKs and 21 tentative cpPPs. However, test sets of 9 tentative cpPKs and 13 tentative cpPPs contain only 2 and 7 genuine cpPKs and cpPPs, respectively, based on experimental subcellular localization of their N-termini fused to the reporter protein RFP. Taken together, the set of enzymes known to be involved in the reversible phosphorylation of chloroplast proteins in A. thaliana comprises altogether now 6 cpPKs and 9 cpPPs, the function of which needs to be determined in future by functional genomics approaches. This includes the calcium-regulated PK CIPK13 which we found to be located in the chloroplast, indicating that calcium-dependent signal transduction pathways also operate in this organelle

    Reduced PTEN expression in the pancreas overexpressing transforming growth factor-beta 1

    Get PDF
    PTEN is a candidate tumour suppressor gene and frequently mutated in multiple cancers, however, not in pancreatic cancer. Recently, it has been demonstrated that PTEN expression is regulated by TGF-β1. Using TGF-β1 transgenic mice (n=7) and wildtype littermates (n=6), as well as pancreatic tissues obtained from organ donors (n=10) and patients with pancreatic cancer (n=10), we assessed the expression of PTEN by means of immunohistochemistry and semiquantitative PCR analysis. In addition, PANC-1 cells were treated with TGF-β1 in vitro and the levels of PTEN mRNA were determined in these cells. In human pancreatic cancers PTEN mRNA levels were significantly decreased (P<0.05). In addition, in the pancreas of TGF-β1 transgenic mice the expression of PTEN was significantly reduced (P<0.01), as compared to wildtype littermates and incubation of PANC-1 cells with TGF-β1 decreased PTEN mRNA levels after 24 h. Inasmuch as TGF-β1 decreases PTEN expression in human pancreatic cancer cells and human pancreatic cancers overexpress TGF-β1, the reduced expression of PTEN in pancreatic cancer may be mediated by TGF-β1 overexpression. Thus, although PTEN is not mutated in pancreatic cancers, the reduction of its expression may give pancreatic cancer cells an additional growth advantage

    Downregulation of the anaphase-promoting complex (APC)7 in invasive ductal carcinomas of the breast and its clinicopathologic relationships

    Get PDF
    INTRODUCTION: The anaphase-promoting complex (APC) is a multiprotein complex with E3 ubiquitin ligase activity, which is required for the ubiquitination of securin and cyclin-B. Moreover, the mitotic spindle checkpoint is activated if APC activation is prevented. In addition, several APC-targeting molecules such as securin, polo-like kinase, aurora kinase, and SnoN have been reported to be oncogenes. Therefore, dysregulation of APC may be associated with tumorigenesis. However, the clinical significance and the involvement of APC in tumorigenesis have not been investigated. METHODS: The expression of APC7 was immunohistochemically investigated in 108 invasive ductal carcinomas of the breast and its relationship with clinicopathologic parameters was examined. The expression of APC7 was defined as positive when the summed scores of staining intensities (0 to 3+) and stained proportions (0 to 3+) exceeded 3+. RESULTS: Positive APC7 expression was less frequent than its negative expression when histologic (P = 0.009) or nuclear grade (P = 0.009), or mitotic number (P = 0.0016) was elevated. The frequency of APC7 negative expression was higher in high Ki-67 or aneuploid groups than in low Ki-67 or diploid groups. CONCLUSION: These data show that loss of APC7 expression is more common in breast carcinoma cases with poor prognostic parameters or malignant characteristics. They therefore suggest that dysregulation of APC activity, possibly through downregulation of APC7, may be associated with tumorigenesis in breast cancer

    Recombinant humanised anti-HER2/neu antibody (Herceptin®) induces cellular death of glioblastomas

    Get PDF
    Glioblastoma multiforme (GBM) remains the most devastating primary tumour in neuro-oncology. Targeting of the human epithelial receptor type 2 (HER2)-neu receptor by specific antibodies is a recent well-established therapy for breast tumours. Human epithelial receptor type 2/neu is a transmembrane tyrosine/kinase receptor that appears to be important for the regulation of cancer growth. Human epithelial receptor type 2/neu is not expressed in the adult central nervous system, but its expression increases with the degree of astrocytoma anaplasia. The specificity of HER2/neu for tumoral astrocytomas leads us to study in vitro treatment of GBM with anti-HER2/neu antibody. We used human GBM cell lines expressing HER2/neu (A172 express HER2/neu more than U251MG) or not (U87MG) and monoclonal humanised antibody against HER2/neu (Herceptin®). Human epithelial receptor type 2/neu expression was measured by immunohistochemistry and flow cytometry. Direct antibody effect, complement-dependent cytotoxicity and antibody-dependent cellular cytotoxicity were evaluated by different cytometric assays. We have shown, for the first time, the ability of anti-HER2/neu antibodies to induce apoptosis and cellular-dependent cytotoxicity of HER2/neu-expressing GBM cell lines. The results decreased from A172 to U251 and were negative for U87MG, in accordance with the decreasing density of HER2/neu receptors

    Cytoplasmic N-Terminal Protein Acetylation Is Required for Efficient Photosynthesis in Arabidopsis

    Get PDF
    The Arabidopsis atmak3-1 mutant was identified on the basis of a decreased effective quantum yield of photosystem II. In atmak3-1, the synthesis of the plastome-encoded photosystem II core proteins D1 and CP47 is affected, resulting in a decrease in the abundance of thylakoid multiprotein complexes. DNA array–based mRNA analysis indicated that extraplastid functions also are altered. The mutation responsible was localized to AtMAK3, which encodes a homolog of the yeast protein Mak3p. In yeast, Mak3p, together with Mak10p and Mak31p, forms the N-terminal acetyltransferase complex C (NatC). The cytoplasmic AtMAK3 protein can functionally replace Mak3p, Mak10p, and Mak31p in acetylating N termini of endogenous proteins and the L-A virus Gag protein. This result, together with the finding that knockout of the Arabidopsis MAK10 homolog does not result in obvious physiological effects, indicates that AtMAK3 function does not require NatC complex formation, as it does in yeast. We suggest that N-acetylation of certain chloroplast precursor protein(s) is necessary for the efficient accumulation of the mature protein(s) in chloroplasts
    corecore