9 research outputs found

    Overview and recommendations for the application of digital PCR

    Get PDF
    The digital Polymerase Chain Reaction (dPCR), for the detection and absolute quantification of DNA, is a relatively new technique but its application in analytical laboratories is steadily increasing. In contrast to quantitative real-time PCR, DNA (fragments) can be quantified without the need for standard curves. Using dPCR, the PCR mix containing the (target) DNA is partitioned – depending on the device used – currently into a maximum of 10,000,000 small compartments with a volume as low as a few picoliters. These can be either physically distinct compartments on a chip (referred to as chamber-based digital PCR [cdPCR]), or these compartments correspond to water-in-oil droplets (referred to as droplet digital [ddPCR]). Common to both approaches, once PCR has been carried out simultaneously in all compartments/droplets, the number of positive and negative signals for each partition is counted by fluorescence measurement. With this technique, an absolute quantification of DNA copy numbers can be performed with high precision and trueness, even for very low DNA copy numbers. Furthermore, dPCR is considered less susceptible than qPCR to PCR inhibitory substances that can be co-extracted during DNA extraction from different sources. Digital PCR has already been applied in various fields, for example for the detection and quantification of GMOs, species (animals, plants), human diseases, food viruses and bacteria including pathogens. When establishing dPCR in a laboratory, different aspects have to be considered. These include, but are not limited to, the adjustment of the type of the PCR master mix used, optimised primer and probe concentrations and signal separation of positive and negative compartments. This document addresses these and other aspects and provides recommendations for the transfer of existing real-time PCR methods into a dPCR format.JRC.F.5-Food and Feed Complianc

    Detection and Typing of Norovirus from Frozen Strawberries Involved in a Large-Scale Gastroenteritis Outbreak in Germany

    Get PDF
    During September/October 2012, a norovirus gastroenteritis outbreak affecting about 11,000 people occurred in Germany. Epidemiological studies suggested that frozen strawberries represented the vehicle of infection. We describe here the analysis of frozen strawberries for the presence of norovirus. Samples were taken by applying a stratified subsampling scheme. Two different methods for virus extraction from strawberries were compared. First, viruses were eluted from strawberries under alkaline conditions and concentrated using a polyethylene glycol precipitation. Second, ultrafiltration was applied for concentration of viruses rinsed off of the berries. In both cases, RNA was extracted and analyzed by real-time RT-PCR. Application of the ultrafiltration method generally resulted in a lower detection rate. Noroviruses were detected in 7/11 samples derived from the lot of strawberries implicated in the outbreak using the precipitation method. Typing of norovirus revealed three different genotypes including a combination of norovirus genotype II.16 (viral polymerase) and II.13 (viral capsid). This genotype combination was also found in some of the patients that were involved in the outbreak, but that had not been reported in Germany so far. In conclusion, heterogeneously distributed noroviruses in frozen strawberries can be detected by applying an optimized combination of sampling procedures, virus extraction methods, and real-time RT-PCR protocols. The detection of several different genotypes in the strawberries may suggest contamination from sewage rather than from a single infected food handler

    Enhanced Reverse Transcription-PCR Assay for Detection of Norovirus Genogroup I

    No full text
    We have developed a one-tube reverse transcription (RT)-PCR method using the real-time TaqMan PCR system for the detection of norovirus genogroup I (NV GGI). By introduction of a novel probe based on locked nucleic acid technology, we enhanced the sensitivity of the assay compared to those of conventional TaqMan probes. The sensitivity of the NV GGI RT-PCR was determined by probit analysis with defined RNA standards and quantified norovirus isolates to 711 copies/ml (95% detection limit). In order to detect PCR inhibition, we included a heterologous internal control (IC) system based on phage MS2. This internally controlled RT-PCR was tested on different real-time PCR platforms, LightCycler, Rotorgene, Mastercycler EP realplex, and ABI Prism. Compared to the assay without an IC, the duplex RT-PCR exhibited no reduction in sensitivity in clinical samples. In combination with an established NV GGII real-time RT-PCR, we used the novel assay in a routine assay for diagnosis of clinical and food-borne norovirus infection. We applied this novel assay to analyze outbreaks of nonbacterial acute gastroenteritis. Norovirus of GGI was detected in these outbreaks. Sequence and similarity plot analysis of open reading frame 1 (ORF1) and ORF2 showed two genotypes, GGI/2 and GGI/4, in semiclosed communities
    corecore