13 research outputs found

    APPARATUS FOR THE STUDY OF FISSION-GAS RELEASE FROM NEUTRON-ACTIVATED FUELED GRAPHITE

    Full text link
    A simple laboratory apparatus for the study of fissiongas release from neutron-activated fueled graphite was developed. Xenon-133 released from a heated specimen is carried in a helium sweep gas to a charcoal trap, where the accumulated activity is monitored continuously by a scintillation detector, ratemeter, and pen recorder. The maximum specimen temperature (2500 deg F) is achieved in 10 min with an induction heater. All instrumentation is commercially available. Data for several neutron-activated fueled-graphite specimens heated in the range from 800 to 2500 deg F are presented to illustrate the typical results obtained with the apparatus. (auth

    ALUMINA COATING OF UOsup2sup 2 SHOT BY HYDROLYSIS OF ALUMINUM CHLORIDE VAPOR

    Get PDF
    Uniform, dense coatings of alumina about 5 to 150 mu thick were applied to uranium dioxide particles 44 to 350 mu in diameter by hydrolysis of aluminum chloride vapor in a fluidized bed of the particles at 1830 deg F. The coated particles were resistant to nitric acid leaching, to oxidation in 1830 deg F air, and to thermal cycling from 6OO to 2500 deg F. After low neutron exposures, the coated particles showed excellent fission-gas retention at temperatures up to 2400 deg F in inert gas. Although not optimized in the study, the coating process appears to have commercial feasibility. (auth
    corecore