13 research outputs found

    High speed railway ground dynamics: a multi-model analysis

    Get PDF
    High speed railway track and earthwork structures experience varied levels of displacement amplification depending upon train speed. Protecting against amplified track deflections is challenging due to the complexity of deep wave propagation within both the track and supporting soil structures. Therefore it is challenging to derive design guidelines that encompass the full range of influential variables. As a solution, this paper uses a novel multi-model framework where 4 complimentary modelling strategies are combined, and thus able to generate new insights into railway ground dynamics and ‘critical velocity’. The four types of model are: 1) analytical, 2) hybrid analytical-numerical, 3) 2.5D numerical, 4) 3D numerical. They are used to explore subgrade layering, track type, train type, soil non-linearity, shakedown and ground improvement. The findings provide new insights into railway track-ground geodynamics and are useful when considering the design or upgrade of railroad lines

    The Effect of Soil Non-linearity on Mixed Traffic Railway Lines: Passenger vs Freight Loads

    Get PDF
    To add additional capacity to railway networks, freight services might be added to lines that have previously only be used for passenger services. Existing ballasted lines may have mixed subgrade conditions and thus the effect of increased axle loads on track behavior is unclear. Typically, such cases will result in elevated track deflections in comparison to passenger vehicles. As a result, the supporting subgrade experiences higher strain levels, which can fall into the large strain range. The related non-linear subgrade behavior plays an important role in track response but is challenging to model. As a solution, this paper presents a new semi-analytical numerical model, where the track is simulated analytically and allows for 1D wave propagation. The ground is modelled using a non-linear equivalent thin-layer finite element formulation. This allows for the subgrade stiffness to be updated in an iterative manner with minimal computational effort. A case study is presented to show that modest increases in axle load can have a marked effect on track deflections

    Railway-induced ground vibrations – a review of vehicle effects

    Get PDF
    This paper is a review of the effect of vehicle characteristics on ground- and track borne-vibrations from railways. It combines traditional theory with modern thinking and uses a range of numerical analysis and experimental results to provide a broad analysis of the subject area. First, the effect of different train types on vibration propagation is investigated. Then, despite not being the focus of this work, numerical approaches to vibration propagation modelling within the track and soil are briefly touched upon. Next an in-depth discussion is presented related to the evolution of numerical models, with analysis of the suitability of various modelling approaches for analysing vehicle effects. The differences between quasi-static and dynamic characteristics are also discussed with insights into defects such as wheel/rail irregularities. Additionally, as an appendix, a modest database of train types are presented along with detailed information related to their physical attributes. It is hoped that this information may provide assistance to future researchers attempting to simulate railway vehicle vibrations. It is concluded that train type and the contact conditions at the wheel/rail interface can be influential in the generation of vibration. Therefore, where possible, when using numerical approach, the vehicle should be modelled in detail. Additionally, it was found that there are a wide variety of modelling approaches capable of simulating train types effects. If non-linear behaviour needs to be included in the model, then time domain simulations are preferable, however if the system can be assumed linear then frequency domain simulations are suitable due to their reduced computational demand

    Identification of effective properties of the railway substructure in the low-frequency range using a heavy oscillating unit on the track

    Get PDF
    As the demand for predictions of train-induced vibrations is increasing, it is essential that adequate parameters of the railway structure are given as input in the predictions. Gathering this information can be quite time-consuming and costly, especially when predictions are required for the low-frequency emission. This article presents a procedure for deriving the effective properties of the foundation under the sleepers of a railway track from measurements taken with a heavy oscillating unit on the track. The unit consists of two masses inside a modified freight car that exert a dynamic force in the range 3–30 Hz on one of the two axles. The ratio of force applied on the axle over the resulting response measured with an accelerometer is studied. The foundation of the sleepers is modelled using a frequency-dependent complex-valued dynamic stiffness.Design and ConstructionCivil Engineering and Geoscience
    corecore