1,333 research outputs found

    Rate- and State-Dependent Friction Law and Statistical Properties of Earthquakes

    Full text link
    In order to clarify how the statistical properties of earthquakes depend on the constitutive law characterizing the stick-slip dynamics, we make an extensive numerical simulation of the one-dimensional spring-block model with the rate- and state-dependent friction law. Both the magnitude distribution and the recurrence-time distribution are studied with varying the constitutive parameters characterizing the model. While a continuous spectrum of seismic events from smaller to larger magnitudes is obtained, earthquakes described by this model turn out to possess pronounced ``characteristic'' features.Comment: Minor revisions are made in the text and in the figures. Accepted for publication in Europhys. Letter

    Transition to 21st century socialism in the European Union

    Get PDF
    This paper attempts to outline the economic steps that would be necessary to convert a capitalist economy like the EU into a socialist one. We examine the issue in very concrete terms and propose specific policy measures. The measures we propose differ significantly from the tradition of 20th century European Social Democracy

    Acoustic radiation controls friction: Evidence from a spring-block experiment

    Full text link
    Brittle failures of materials and earthquakes generate acoustic/seismic waves which lead to radiation damping feedbacks that should be introduced in the dynamical equations of crack motion. We present direct experimental evidence of the importance of this feedback on the acoustic noise spectrum of well-controlled spring-block sliding experiments performed on a variety of smooth surfaces. The full noise spectrum is quantitatively explained by a simple noisy harmonic oscillator equation with a radiation damping force proportional to the derivative of the acceleration, added to a standard viscous term.Comment: 4 pages including 3 figures. Replaced with version accepted in PR

    Unified Description of Aging and Rate Effects in Yield of Glassy Solids

    Full text link
    The competing effects of slow structural relaxations (aging) and deformation at constant strain rate on the shear yield stress Ï„y\tau^y of simple model glasses are examined using molecular simulations. At long times, aging leads to a logarithmic increase in density and Ï„y\tau^y. The yield stress also rises logarithmically with rate, but shows a sharp transition in slope at a rate that decreases with increasing age. We present a simple phenomenological model that includes both intrinsic rate dependence and the change in properties with the total age of the system at yield. As predicted by the model, all data for each temperature collapse onto a universal curve.Comment: 4 pages, 3 figure

    Boundary lubrication with a glassy interface

    Full text link
    Recently introduced constitutive equations for the rheology of dense, disordered materials are investigated in the context of stick-slip experiments in boundary lubrication. The model is based on a generalization of the shear transformation zone (STZ) theory, in which plastic deformation is represented by a population of mesoscopic regions which may undergo non affine deformations in response to stress. The generalization we study phenomenologically incorporates the effects of aging and glassy relaxation. Under experimental conditions associated with typical transitions from stick-slip to steady sliding and stop start tests, these effects can be dominant, although the full STZ description is necessary to account for more complex, chaotic transitions

    Phenotypic indicators to identify methionine rich European grain legumes and the correlation of grain methionine contents with the sulphur supply

    Get PDF
    Home grown legumes are a valuable protein source for pure on-farm diets for livestock in organic farming. Whereas protein of Glycine max naturally has higher contents of methionine nand also lysine typical European grain legumes (Pisum sativum L., Vicia faba L., Lupinus angustifolius L.) used in organic farms as component of animal food are relatively low in those amino acids

    Charge-density Waves Survive the Pauli Paramagnetic Limit

    Full text link
    Measurements of the resistance of single crystals of (Per)2_2Au(mnt)2_2 have been made at magnetic fields BB of up to 45 T, exceeding the Pauli paramagnetic limit of BP≈37B_{\rm P}\approx 37 T. The continued presence of non-linear charge-density wave electrodynamics at B≥37B \geq 37 T unambiguously establishes the survival of the charge-density wave state above the Pauli paramagnetic limit, and the likely emergence of an inhomogeneous phase analogous to that anticipated to occur in superconductors.Comment: 4 pages, three figure

    Re-entrant hidden order at a metamagnetic quantum critical end point

    Get PDF
    Magnetization measurements of URu2Si2 in pulsed magnetic fields of 44 T reveal that the hidden order phase is destroyed before appearing in the form of a re-entrant phase between ~ 36 and 39 T. Evidence for conventional itinerant electron metamagnetism at higher temperatures suggests that the re-entrant phase is created in the vicinity of a quantum critical end point.Comment: 8 pages, including 3 figures (Physical Review Letters, in press) a systematic error in the field calibration has been fixed since the original submission of this manuscrip

    Kinetics in one-dimensional lattice gas and Ising models from time-dependent density functional theory

    Full text link
    Time-dependent density functional theory, proposed recently in the context of atomic diffusion and non-equilibrium processes in solids, is tested against Monte Carlo simulation. In order to assess the basic approximation of that theory, the representation of non-equilibrium states by a local equilibrium distribution function, we focus on one-dimensional lattice models, where all equilibrium properties can be worked exactly from the known free energy as a functional of the density. This functional determines the thermodynamic driving forces away from equilibrium. In our studies of the interfacial kinetics of atomic hopping and spin relaxation, we find excellent agreement with simulations, suggesting that the method is useful also for treating more complex problems.Comment: 8 pages, 5 figures, submitted to Phys. Rev.

    Dynamics of Viscoplastic Deformation in Amorphous Solids

    Full text link
    We propose a dynamical theory of low-temperature shear deformation in amorphous solids. Our analysis is based on molecular-dynamics simulations of a two-dimensional, two-component noncrystalline system. These numerical simulations reveal behavior typical of metallic glasses and other viscoplastic materials, specifically, reversible elastic deformation at small applied stresses, irreversible plastic deformation at larger stresses, a stress threshold above which unbounded plastic flow occurs, and a strong dependence of the state of the system on the history of past deformations. Microscopic observations suggest that a dynamically complete description of the macroscopic state of this deforming body requires specifying, in addition to stress and strain, certain average features of a population of two-state shear transformation zones. Our introduction of these new state variables into the constitutive equations for this system is an extension of earlier models of creep in metallic glasses. In the treatment presented here, we specialize to temperatures far below the glass transition, and postulate that irreversible motions are governed by local entropic fluctuations in the volumes of the transformation zones. In most respects, our theory is in good quantitative agreement with the rich variety of phenomena seen in the simulations.Comment: 16 pages, 9 figure
    • …
    corecore