188 research outputs found

    Nicht alles, was "Fett" ist, macht dick : Fettsäuren - Botenstoffe von großem pharmazeutischen Interesse

    Get PDF
    Lipide sind essentielle Strukturelemente von Zellen. Sie sind unter anderem Hauptbestandteil von Membranen, die einerseits verschiedene Kompartimente innerhalb der Zelle gegeneinander abgrenzen und andererseits die Zelle nach außen abschotten. Membranen regulieren den Transport von Ionen, kleinen polaren Molekülen sowie peptidartigen Botenstoffen, da sie für viele Bestandteile des Organismus nicht oder nur wenig durchlässig (permeabel) sind

    Die ZĂĽnglein an der Waage : Eicosanoide und ihre Rolle bei physiologischen und pathophysiologischen Prozessen

    Get PDF
    Wie entsteht Schmerz? Und wie kann man ihn lindern? Um diese Fragen beantworten zu können, untersuchen Forscher eine Gruppe von Schlüsselmolekülen, die Eicosanoide, und ihre Abbauprodukte. Dabei machen sie immer wieder überraschende Entdeckungen: Blockiert man etwa durch Schmerzmittel wie Acetylsalicylsäure gezielt die Entstehung des Abbauprodukts Prostaglandin, schützt dies auch vor Krebs. Verhindert man die Entstehung von Leukotrienen, lassen sich allergische Reaktionen wie Asthma, aber auch Krebs, Osteoporose und Herz-Kreislauf-Erkrankungen beeinflussen

    Selective non-steroidal glucocorticoid receptor agonists attenuate inflammation but do not impair intestinal epithelial cell restitution in vitro

    Get PDF
    Introduction: Despite the excellent anti-inflammatory and immunosuppressive action of glucocorticoids (GCs), their use for the treatment of inflammatory bowel disease (IBD) still carries significant risks in terms of frequently occurring severe side effects, such as the impairment of intestinal tissue repair. The recently-introduced selective glucocorticoid receptor (GR) agonists (SEGRAs) offer anti-inflammatory action comparable to that of common GCs, but with a reduced side effect profile. Methods: The in vitro effects of the non-steroidal SEGRAs Compound A (CpdA) and ZK216348, were investigated in intestinal epithelial cells and compared to those of Dexamethasone (Dex). GR translocation was shown by immunfluorescence and Western blot analysis. Trans-repressive effects were studied by means of NF-κB/p65 activity and IL-8 levels, trans-activation potency by reporter gene assay. Flow cytometry was used to assess apoptosis of cells exposed to SEGRAs. The effects on IEC-6 and HaCaT cell restitution were determined using an in vitro wound healing model, cell proliferation by BrdU assay. In addition, influences on the TGF-β- or EGF/ERK1/2/MAPK-pathway were evaluated by reporter gene assay, Western blot and qPCR analysis. Results: Dex, CpdA and ZK216348 were found to be functional GR agonists. In terms of trans-repression, CpdA and ZK216348 effectively inhibited NF-κB activity and IL-8 secretion, but showed less trans-activation potency. Furthermore, unlike SEGRAs, Dex caused a dose-dependent inhibition of cell restitution with no effect on cell proliferation. These differences in epithelial restitution were TGF-β-independent but Dex inhibited the EGF/ERK1/2/MAPK-pathway important for intestinal epithelial wound healing by induction of MKP-1 and Annexin-1 which was not affected by CpdA or ZK216348. Conclusion: Collectively, our results indicate that, while their anti-inflammatory activity is comparable to Dex, SEGRAs show fewer side effects with respect to wound healing. The fact that SEGRAs did not have a similar effect on cell restitution might be due to a different modulation of EGF/ERK1/2 MAPK signalling

    PhAST : pharmacophore alignment search tool

    Get PDF
    We developed the Pharmacophore Alignment Search Tool (PhAST), a text-based technique for rapid hit and lead structure searching in large compound databases. For each molecule, a two-dimensional graph of potential pharmacophoric points (PPPs) is created, which has an identical topology as the original molecule with implicit hydrogen atoms. Each vertex is coloured by a symbol representing the corresponding PPP. The vertices of the graph are canonically labelled. The symbols associated with the vertices are combined to a so-called PhAST-Sequence beginning with the vertex with the lowest canonical label. Due to the canonical labelling the created PhAST-Sequence is characteristic for each molecule. For similarity assessment, PhAST-Sequences are compared using the sequence identity in their global pairwise alignment. The alignment score lies between 0 (no similarity) and 1 (identical PhAST-Sequences). In order to use global pairwise sequence alignment, a score matrix for pharmacophoric symbols was developed and gap penalties were optimized. PhAST performed comparably and sometimes superior to other similarity search tools (CATS2D, MOE pharmacophore quadruples) in retrospective virtual screenings using the COBRA collection of drugs and lead structures. Most importantly, the PhAST alignment technique allows for the computation of significance estimates that help prioritize a virtual hit list

    Trichostatin A induces 5-lipoxygenase promoter activity and mRNA expression via inhibition of histone deacetylase 2 and 3

    Get PDF
    The 5-lipoxygenase (5-LO) is the key enzyme in the formation of leukotrienes. We have previously shown that the histone deacetylase (HDAC) inhibitor trichostatin A (TSA) activates 5-LO transcription via recruitment of Sp1, Sp3 and RNA polymerase II to the proximal promoter. To identify the HDACs involved in the regulation of 5-LO promoter activity isoform-specific HDAC inhibitors were applied. 5-LO promoter activity and mRNA expression were up-regulated by the class I HDAC inhibitors apicidin and MS-275 but not by class II inhibitors. Knockdown of HDAC 1, 2 and 3 revealed that HDAC2 and HDAC3 but not HDAC1 is involved in the up-regulation of 5-LO mRNA expression. To analyse the chromatin modifications at the 5-LO promoter associated with HDAC inhibition, the time course of 5-LO mRNA induction by trichostatin A was investigated and the concomitant changes in histone modifications at the 5-LO promoter in HL-60, U937 and Mono Mac6 cells were determined. Chromatin immunoprecipitation analysis revealed that trichostatin A increases acetylation of histones H3 and H4 at the 5-LO core promoter in HL-60 and U937 cells whereas no significant changes were observed in Mono Mac6 cells. The appearance of H3 and H4 acetylation preceded the 5-LO mRNA induction whereas in all three cell lines, induction of 5-LO mRNA expression correlated with histone H3 lysine 4 trimethylation (H3K4me3), a marker for transcriptional activity of gene promoters
    • …
    corecore