96 research outputs found

    c-ABL gene expression and spermatogenesis : investigations into the possible role of octamer transcription factors

    Get PDF
    The work described in this thesis aims at the elucidation of mechanisms that govern cellular differentiation events in male germ cell development (spermatogenesis), especially during the post-meiotic phase (spermiogenesis). and in embryonal carcinoma cells. Chapter II describes the molecular characterization of a variant c-abl mANA (TSabl) that is specifically expressed at high levels during spermiogenesis and was suggested to play an important role in this proces. The TSabl mANA is transcribed from the proximal of the two c-abl promoters and is alternatively processed resulting in a removal of most of the 3'UTA, without an effect on the coding capicity of the mANAs. The high levels of this shortened mANA in post-meiotic male germ cells could be due to two not mutually exclusive mechanisms, i.e. a higher mANA stability or/and continued transcription of the gene during the later phases of spermiogenesis. Chapter Ill describes experiments that tried to address the question whether the TSabl mANA has a longer half life as a consequence of the removal of most of the 3'UTA. In chapter IV a preliminary analysis of the c-abl promoter is presented, using DNAsel footprinting and gel retardation assays. The results of these experiments hinted at the possibility that there exists a testis specific octamer binding factor that could be involved in the haploid specific regulation of gene expression. This stimulated us to undertake the experiments described in chapter V that aimed at the cloning of testis specific cDNAs encoding octamer binding factors. We show that the POU domain gene Oct2 is highly expressed in spermatogenic cells, generating two transcripts through a mechanism of alternative processing and/or promoter usage. This chapter closes with a discussion of testis specific gene expression. The temporally regulated expression of a family of octamer binding factors during 'neuronal 'differentiation of P19 EC cells is described in chapter VI. One factor, Oct6, is expressed in a bi-phasic pattern, suggesting that it might play a role at different stages of development. This factor is further characterized by cloning of the cognate eDNA and was found to be the mouse homologue of the rat Tst-1 POU gene [29]. This gene is highly expressed in rat testis but not in mouse testis (this thesis). Chapter VII describes the functional mapping of the protein domains involved in transcriptional activation and DNA binding. In chapter VIII the genomic organization of the Oct6 gene is described. Furthermore, we present an initial characterization of the Oct6 promoter, to begin to address the important question of how this transcriptional regulator is regulated itself. In the last chapter some aspects of the Oct6 gene are discussed in relation to its possible function in differentiation, drawing on examples from other members of the POU domain gene famil

    Expression analysis of the CLCA gene family in mouse and human with emphasis on the nervous system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Members of the calcium-activated chloride channel (CLCA) gene family have been suggested to possess a variety of functions including cell adhesion and tumor suppression. Expression of CLCA family members has mostly been analyzed in non-neural tissues. Here we describe the expression of mouse and human CLCA genes in the nervous system.</p> <p>Results</p> <p>We show that from the six mouse CLCA family members only Clca1, Clca2 and Clca4 mRNAs are expressed in the adult brain, predominantly in olfactory ensheathing cells. During mouse nervous system development Clca1/2 is more widely expressed, particularly in cranial nerves, the diencephalon and in the cerebral cortex. While human CLCA2 and CLCA4 genes are widely expressed in brain, and at particularly high levels in the optic nerve, human CLCA3, the closest homologue of mouse Clca1, Clca2 and Clca4, is not expressed in the brain. Furthermore, we characterize the expression pattern of mouse Clca1/2 genes during embryonic development by in situ hybridization.</p> <p>Conclusion</p> <p>The data published in this article indicate that within the nervous system mouse Clca1/2 genes are highly expressed in the cells ensheathing cranial nerves. Human CLCA2 and CLCA4 mRNAs are expressed at high level in optic nerve. High level expression of CLCA family members in mouse and human glial cells ensheathing nerves suggests a specific role for CLCA proteins in the development and homeostasis of these cells.</p

    The restricted expression pattern of the POU factor Oct-6 during early development of the mouse nervous system

    Get PDF
    Oce-6 is a POU transcription factor that is thought to play a role in the differentiation of cells of neuroectodermal origin. To investigate whether the Oct-6 protein could play a role in the establishment of neuroectoderm in vivo we studied the expression of the Oct-6 protein during early mouse development. Expression is first observed in the primitive ectoderm of the egg cylinder stage embryo. In gastrulating embryos, Oct-6 protein is found in the extra-embryonic ectoderm of the chorion and the anterior ectoderm of the embryo proper. As development proceeds, Oct-6 expression becomes more restricted to the anterior medial part of the embryo until Oct-6 positive cells are observed only in the neural groove of the headfold stage embryo. In the late headfold stage embryo, Oct-6 expression is detected in the neuroepithelium of the entire brain and later is restricted to a more ventral and anterior position. As the anterior neuropore closes, Oct-6 protein is detected in a segment-like pattern in the mid- and forebrain. Thus, the expression pattern of the Oct-6 gene agrees with a role for the Oct-6 protein in the establishment and regional specification of the neuroectoderm in vivo. The two waves of widespread induction of the Oct-6 gene, one in the primitive ectoderm and another in the primitive brain, both followed by a progressive restriction in the expression patterns suggest a mechanism for the regulation of the gene

    LGI proteins in the nervous system

    Get PDF
    The development and function of the vertebrate nervous system depend on specific interactions between different cell types. Two examples of such interactions are synaptic transmission and myelination. LGI1-4 (leucine-rich glioma inactivated proteins) play important roles in these processes. They are secreted proteins consisting of an LRR (leucinerich repeat) domain and a so-called epilepsy-associated or EPTP (epitempin) domain. Both domains are thought to function in protein-protein interactions. The first LGI gene to be identified, LGI1, was found at a chromosomal translocation breakpoint in a glioma cell line. It was subsequently found mutated in ADLTE (autosomal dominant lateral temporal (lobe) epilepsy) also referred to as ADPEAF (autosomal dominant partial epilepsy with auditory features). LGI1 protein appears to act at synapses and antibodies against LGI1 may cause the autoimmune disorder limbic encephalitis. A similar function in synaptic remodelling has been suggested for LGI2, which is mutated in canine Benign Familial Juvenile Epilepsy. LGI4 is required for proliferation of glia in the peripheral nervous system and binds to a neuronal receptor, ADAM22, to foster ensheathment and myelination of axons by Schwann cells. Thus, LGI proteins play crucial roles in nervous system development and function and their study is highly important, both to understand their biological functions and for their therapeutic potential. Here, we review our current knowledge about this important family of proteins, and the progress made towards understanding their functions

    Octamer-binding factor 6 (Oct-6/Pou3f1) is induced by interferon and contributes to dsRNA-mediated transcriptional responses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Octamer-binding factor 6 (Oct-6, Pou3f1, SCIP, Tst-1) is a transcription factor of the Pit-Oct-Unc (POU) family. POU proteins regulate key developmental processes and have been identified from a diverse range of species. Oct-6 expression is described to be confined to the developing brain, Schwann cells, oligodendrocyte precursors, testes, and skin. Its function is primarily characterised in Schwann cells, where it is required for correctly timed transition to the myelinating state. In the present study, we report that Oct-6 is an interferon (IFN)-inducible protein and show for the first time expression in murine fibroblasts and macrophages.</p> <p>Results</p> <p>Oct-6 was induced by type I and type II IFN, but not by interleukin-6. Induction of Oct-6 after IFNβ treatment was mainly dependent on signal transducer and activator of transcription 1 (Stat1) and partially on tyrosine kinase 2 (Tyk2). Chromatin immunopreciptitation experiments revealed binding of Stat1 to the Oct-6 promoter in a region around 500 bp upstream of the transcription start site, a region different from the downstream regulatory element involved in Schwann cell-specific Oct-6 expression. Oct-6 was also induced by dsRNA treatment and during viral infections, in both cases <it>via </it>autocrine/paracrine actions of IFNα/β. Using microarray and RT-qPCR, we furthermore show that Oct-6 is involved in the regulation of transcriptional responses to dsRNA, in particular in the gene regulation of serine/threonine protein kinase 40 (<it>Stk40</it>) and U7 snRNA-associated Sm-like protein Lsm10 (<it>Lsm10)</it>.</p> <p>Conclusion</p> <p>Our data show that Oct-6 expression is not as restricted as previously assumed. Induction of Oct-6 by IFNs and viruses in at least two different cell types, and involvement of Oct-6 in gene regulation after dsRNA treatment, suggest novel functions of Oct-6 in innate immune responses.</p

    Neural crest stem cells undergo multilineage differentiation in developing peripheral nerves to generate endoneurial fibroblasts in addition to Schwann cells

    Get PDF
    Neural crest stem cells (NCSCs) persist in peripheral nerves throughout late gestation but their function is unknown. Current models of nerve development only consider the generation of Schwann cells from neural crest, but the presence of NCSCs raises the possibility of multilineage differentiation. We performed Cre-recombinase fate mapping to determine which nerve cells are neural crest derived. Endoneurial fibroblasts, in addition to myelinating and non-myelinating Schwann cells, were neural crest derived, whereas perineurial cells, pericytes and endothelial cells were not. This identified endoneurial fibroblasts as a novel neural crest derivative, and demonstrated that trunk neural crest does give rise to fibroblasts in vivo, consistent with previous studies of trunk NCSCs in culture. The multilineage differentiation of NCSCs into glial and non-glial derivatives in the developing nerve appears to be regulated by neuregulin, notch ligands, and bone morphogenic proteins, as these factors are expressed in the developing nerve, and cause nerve NCSCs to generate Schwann cells and fibroblasts, but not neurons, in culture. Nerve development is thus more complex than was previously thought, involving NCSC self-renewal, lineage commitment and multilineage differentiation

    On the change of growth and wood constructive substances in Salix Koriyanagi which was grown in different soil moisture conditions

    Get PDF
    textabstractThe cellular interactions that drive the formation and maintenance of the insulating myelin sheath around axons are only partially understood. Leucine-rich glioma-inactivated (LGI) proteins play important roles in nervous system development and mutations in their genes have been associated with epilepsy and amyelination. Their function involves interactions with ADAM22 and ADAM23 cell surface receptors, possibly in apposing membranes, thus attenuating cellular interactions. LGI4-ADAM22 interactions are required for axonal sorting and myelination in the developing peripheral nervous system (PNS). Functional analysis revealed that, despite their high homology and affinity for ADAM22, LGI proteins are functionally distinct. To dissect the key residues in LGI proteins required for coordinating axonal sorting and myelination in the developing PNS, we adopted a phylogenetic and computational approach and demonstrate that the mechanism of action of LGI4 depends on a cluster of three amino acids on the outer surface of the LGI4 protein, thus providing a structural basis for the mechanistic differences in LGI protein function in nervous system development and evolution

    A tissue-specific knockout reveals that Gata1 is not essential for Sertoli cell function in the mouse

    Get PDF
    The transcription factor Gata1 is essential for the development of erythroid cells. Consequently, Gata1 null mutants die in utero due to severe anaemia. Outside the haematopoietic system, Gata1 is only expressed in the Sertoli cells of the testis. To elucidate the function of Gata1 in the testis, we made a Sertoli cell-specific knockout of the Gata1 gene in the mouse. We deleted a normally functioning 'floxed' Gata1 gene in pre-Sertoli cells in vivo through the expression of Cre from a transgene driven by the Desert Hedgehog promoter. Surprisingly, Gata1 null testes developed to be morphologically normal, spermatogenesis was not obviously affected and expression levels of putative Gata1 target genes, and other Gata factors, were not altered. We conclude that expression of Gata1 in Sertoli cells is not essential for testis development or spermatogenesis in the mouse

    LGI3/2-ADAM23 interactions cluster Kv1 channels in myelinated axons to regulate refractory period

    Get PDF
    Along myelinated axons, Shaker-type potassium channels (Kv1) accumulate at high density in the juxtaparanodal region, directly adjacent to the paranodal axon-glia junctions that flank the nodes of Ranvier. However, the mechanisms that control the clustering of Kv1 channels, as well as their function at this site, are still poorly understood. Here we demonstrate that axonal ADAM23 is essential for both the accumulation and stability of juxtaparanodal Kv1 complexes. The function of ADAM23 is critically dependent on its interaction with its extracellular ligands LGI2 and LGI3. Furthermore, we demonstrate that juxtaparanodal Kv1 complexes affect the refractory period, thus enabling high-frequency burst firing of action potentials. Our findings not only reveal a previously unknown molecular pathway that regulates Kv1 channel clustering, but they also demonstrate that the juxtaparanodal Kv1 channels that are concealed below the myelin sheath, play a significant role in modifying axonal physiology

    Dynamin 2 mutations in Charcot-Marie-Tooth neuropathy highlight the importance of clathrin-mediated endocytosis in myelination

    Get PDF
    Mutations in dynamin 2 (DNM2) lead to dominant intermediate Charcot-Marie-Tooth neuropathy type B, while a different set of DNM2 mutations cause autosomal dominant centronuclear myopathy. In this study, we aimed to elucidate the disease mechanisms in dominant intermediate Charcot-Marie-Tooth neuropathy type B and to find explanations for the tissue-specific defects that are associated with different DNM2 mutations in dominant intermediate Charcot-Marie-Tooth neuropathy type B versus autosomal dominant centronuclear myopathy. We used tissue derived from Dnm2-deficient mice to establish an appropriate peripheral nerve model and found that dominant intermediate Charcot-Marie-Tooth neuropathy type B-associated dynamin 2 mutants, but not autosomal dominant centronuclear myopathy mutants, impaired myelination. In contrast to autosomal dominant centronuclear myopathy mutants, Schwann cells and neurons from the peripheral nervous system expressing dominant intermediate Charcot-Marie-Tooth neuropathy mutants showed defects in clathrin-mediated endocytosis. We demonstrate that, as a consequence, protein surface levels are altered in Schwann cells. Furthermore, we discovered that myelination is strictly dependent on Dnm2 and clathrin-mediated endocytosis function. Thus, we propose that altered endocytosis is a major contributing factor to the disease mechanisms in dominant intermediate Charcot-Marie-Tooth neuropathy type
    corecore