126 research outputs found
HDAC2 attenuates TRAIL-induced apoptosis of pancreatic cancer cells
<p>Abstract</p> <p>Background</p> <p>Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant tumors with a dismal prognosis and no effective conservative therapeutic strategies. Although it is demonstrated that histone deacetylases (HDACs), especially the class I HDACs HDAC1, 2 and 3 are highly expressed in this disease, little is known about HDAC isoenzyme specific functions.</p> <p>Results</p> <p>Depletion of HDAC2, but not HDAC1, in the pancreatic cancer cell lines MiaPaCa2 and Panc1 resulted in a marked sensitization towards the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Correspondingly, the more class I selective HDAC inhibitor (HDACI) valproic acid (VPA) synergized with TRAIL to induce apoptosis of MiaPaCa2 and Panc1 cells. At the molecular level, an increased expression of the TRAIL receptor 1 (DR5), accelerated processing of caspase 8, pronounced cleavage of the BH3-only protein Bid, and increased effector caspase activation was observed in HDAC2-depleted and TRAIL-treated MiaPaCa2 cells.</p> <p>Conclusions</p> <p>Our data characterize a novel HDAC2 function in PDAC cells and point to a strategy to overcome TRAIL resistance of PDAC cells, a prerequisite to succeed with a TRAIL targeted therapy in clinical settings.</p
Experimental validation of a short-term Borehole-to-Ground (B2G) dynamic model
[EN] The design and optimization of ground source heat pump systems require the ability to accurately reproduce the dynamic thermal behavior of the system on a short-term basis, specially in a system control perspective. In this context, modeling borehole heat exchangers (BHEs) is one of the most relevant and difficult tasks. Developing a model that is able to accurately reproduce the instantaneous response of a BHE while keeping a good agreement on a long-term basis is not straightforward. Thus, decoupling the short-term and long-term behavior will ease the design of a fast short-term focused model. This work presents a short-term BHE dynamic model, called Borehole-to-Ground (B2G), which is based on the thermal network approach, combined with a vertical discretization of the borehole.
The proposed model has been validated against experimental data from a real borehole located in Stockholm, Sweden. Validation results prove the ability of the model to reproduce the short-term behavior of the borehole with an accurate prediction of the outlet fluid temperature, as well as the internal temperature profile along the U-tube.The present work has been supported by the FP7 European project "Advanced ground source heat pump systems for heating and cooling in Mediterranean climate" (GROUND-MED), and by the "Resource-Efficient Refrigeration And Heat Pump Systems" (EFF-SYS+) program.Ruiz Calvo, F.; Rosa, MD.; Acuña, J.; Corberán Salvador, JM.; Montagud Montalvá, CI. (2015). Experimental validation of a short-term Borehole-to-Ground (B2G) dynamic model. Applied Energy. 140:210-223. https://doi.org/10.1016/j.apenergy.2014.12.002S21022314
Flow in Open Channel with Complex Solid Boundary
yesA two-dimensional steady potential flow theory is applied to calculate the flow in an open channel with complex solid boundaries. The boundary integral equations for the problem under investigation are first derived in an auxiliary plane by taking the Cauchy integral principal values. To overcome the difficulties of a nonlinear curvilinear solid boundary character and free water surface not being known a priori, the boundary integral equations are transformed to the physical plane by substituting the integral variables. As such, the proposed approach has the following advantages: (1) the angle of the curvilinear solid boundary as well as the location of free water surface (initially assumed) is a known function of coordinates in physical plane; and (2) the meshes can be flexibly assigned on the solid and free water surface boundaries along which the integration is performed. This avoids the difficulty of the traditional potential flow theory, which seeks a function to conformally map the geometry in physical plane onto an auxiliary plane. Furthermore, rough bed friction-induced energy loss is estimated using the Darcy-Weisbach equation and is solved together with the boundary integral equations using the proposed iterative method. The method has no stringent requirement for initial free-water surface position, while traditional potential flow methods usually have strict requirement for the initial free-surface profiles to ensure that the numerical computation is stable and convergent. Several typical open-channel flows have been calculated with high accuracy and limited computational time, indicating that the proposed method has general suitability for open-channel flows with complex geometry
Stochastic upscaling of hydrodynamic dispersion and retardation factor in a physically and chemically heterogeneous tropical soil
[EN] Stochastic upscaling of flow and reactive solute transport in a tropical soil is performed using real data collected in the laboratory. Upscaling of hydraulic conductivity, longitudinal hydrodynamic dispersion, and retardation factor were done using three different approaches of varying complexity. How uncertainty propagates after upscaling was also studied. The results show that upscaling must be taken into account if a good reproduction of the flow and transport behavior of a given soil is to be attained when modeled at larger than laboratory scales. The results also show that arrival time uncertainty was well reproduced after solute transport upscaling. This work represents a first demonstration of flow and reactive transport upscaling in a soil based on laboratory data. It also shows how simple upscaling methods can be incorporated into daily modeling practice using commercial flow and transport codes.The authors thank the financial support by the Brazilian National Council for Scientific and Technological Development (CNPq) (Project 401441/2014-8). The doctoral fellowship award to the first author by the Coordination of Improvement of Higher Level Personnel (CAPES) is acknowledged. The first author also thanks the international mobility grant awarded by CNPq, through the Sciences Without Borders program (Grant Number: 200597/2015-9). The international mobility grant awarded by Santander Mobility in cooperation with the University of Sao Paulo is also acknowledged. DHI-WASI is gratefully thanked for providing a FEFLOW license.Almeida De-Godoy, V.; Zuquette, L.; Gómez-Hernández, JJ. (2019). Stochastic upscaling of hydrodynamic dispersion and retardation factor in a physically and chemically heterogeneous tropical soil. Stochastic Environmental Research and Risk Assessment. 33(1):201-216. https://doi.org/10.1007/s00477-018-1624-zS201216331Ahuja LR, Naney JW, Green RE, Nielsen DR (1984) Macroporosity to characterize spatial variability of hydraulic conductivity and effects of land management. Soil Sci Soc Am J 48:699. https://doi.org/10.2136/sssaj1984.03615995004800040001xBellin A, Lawrence AE, Rubin Y (2004) Models of sub-grid variability in numerical simulations of solute transport in heterogeneous porous formations: three-dimensional flow and effect of pore-scale dispersion. Stoch Environ Res Risk Assess 18:31–38. https://doi.org/10.1007/s00477-003-0164-2Brent RP (1973) Algorithms for minimization without derivatives. Prentice Hall, Englewood CliffsBrusseau ML (1998) Non-ideal transport of reactive solutes in heterogeneous porous media: 3. model testing and data analysis using calibration versus prediction. J Hydrol 209:147–165. https://doi.org/10.1016/S0022-1694(98)00121-8Brusseau ML, Srivastava R (1999) Nonideal transport of reactive solutes in heterogeneous porous media: 4. Analysis of the cape cod natural-gradient field experiment. Water Resour Res 35:1113–1125. https://doi.org/10.1029/1998WR900019Brutsaert W (1967) Some methods of calculating unsaturated permeability. Trans ASAE 10:400–404Cadini F, De Sanctis J, Bertoli I, Zio E (2013) Upscaling of a dual-permeability Monte Carlo simulation model for contaminant transport in fractured networks by genetic algorithm parameter identification. Stoch Environ Res Risk Assess 27:505–516. https://doi.org/10.1007/s00477-012-0595-8Cambardella CA, Moorman TB, Parkin TB, Karlen DL, Novak JM, Turco RF, Konopka AE (1994) Field-scale variability of soil properties in central iowa soils. Soil Sci Soc Am J 58:1501. https://doi.org/10.2136/sssaj1994.03615995005800050033xCapilla JE, Rodrigo J, Gómez-Hernández JJ (1999) Simulation of non-Gaussian transmissivity fields honoring piezometric data and integrating soft and secondary information. Math Geol 31:907–927. https://doi.org/10.1023/A:1007580902175Cassiraga EF, Fernàndez-Garcia D, Gómez-Hernández JJ (2005) Performance assessment of solute transport upscaling methods in the context of nuclear waste disposal. Int J Rock Mech Min Sci 42:756–764. https://doi.org/10.1016/j.ijrmms.2005.03.013Corey AT (1977) Mechanics of heterogeneous fluids in porous media. Water Resources Publications, Fort Collins, CO, p 259Dagan G (1989) Flow and transport in porous formations. Springer, Berlin. https://doi.org/10.1007/978-3-642-75015-1Dagan G (2004) On application of stochastic modeling of groundwater flow and transport. Stoch Environ Res Risk Assess. https://doi.org/10.1007/s00477-004-0191-7de Azevedo AAB, Pressinotti MMN, Massoli M (1981) Sedimentological studies of the Botucatu and Pirambóia formations in the region of Santa Rita do Passa Quatro (In portuguese). Rev do Inst Geológico 2:31–38. https://doi.org/10.5935/0100-929X.19810003Deng H, Dai Z, Wolfsberg AV, Ye M, Stauffer PH, Lu Z, Kwicklis E (2013) Upscaling retardation factor in hierarchical porous media with multimodal reactive mineral facies. Chemosphere 91:248–257. https://doi.org/10.1016/j.chemosphere.2012.10.105Diersch H-JG (2014) Finite element modeling of flow, mass and heat transport in porous and fractured media. Springer, Berlin. https://doi.org/10.1007/978-3-642-38739-5Dippenaar MA (2014) Porosity reviewed: quantitative multi-disciplinary understanding, recent advances and applications in vadose zone hydrology. Geotech Geol Eng 32:1–19. https://doi.org/10.1007/s10706-013-9704-9Fagundes JRT, Zuquette LV (2011) Sorption behavior of the sandy residual unconsolidated materials from the sandstones of the Botucatu Formation, the main aquifer of Brazil. Environ Earth Sci 62:831–845. https://doi.org/10.1007/s12665-010-0570-yFenton GA, Griffiths DV (2008) Risk assessment in geotechnical engineering. Wiley, p 463Fernàndez-Garcia D, Gómez-Hernández JJ (2007) Impact of upscaling on solute transport: Traveltimes, scale dependence of dispersivity, and propagation of uncertainty. Water Resour Res. https://doi.org/10.1029/2005WR004727Fernàndez-Garcia D, Llerar-Meza G, Gómez-Hernández JJ (2009) Upscaling transport with mass transfer models: mean behavior and propagation of uncertainty. Water Resour Res. https://doi.org/10.1029/2009WR007764Feyen L, Gómez-Hernández JJ, Ribeiro PJ, Beven KJ, De Smedt F (2003a) A Bayesian approach to stochastic capture zone delineation incorporating tracer arrival times, conductivity measurements, and hydraulic head observations. Water Resour Res. https://doi.org/10.1029/2002WR001544Feyen L, Ribeiro PJ, Gómez-Hernández JJ, Beven KJ, De Smedt F (2003b) Bayesian methodology for stochastic capture zone delineation incorporating transmissivity measurements and hydraulic head observations. J Hydrol 271:156–170. https://doi.org/10.1016/S0022-1694(02)00314-1Forsythe GE, Malcolm MA, Moler CB (1976) Computer methods for mathematical computations. Prentice-Hall, Englewood Cliffs, p 259Freeze R, Cherry J (1979) Groundwater. PrenticeHall Inc, Englewood cliffs, p 604Frippiat CC, Holeyman AE (2008) A comparative review of upscaling methods for solute transport in heterogeneous porous media. J Hydrol 362:150–176. https://doi.org/10.1016/j.jhydrol.2008.08.015Fu J, Gómez-Hernández JJ (2009) Uncertainty assessment and data worth in groundwater flow and mass transport modeling using a blocking Markov chain Monte Carlo method. J Hydrol 364:328–341. https://doi.org/10.1016/j.jhydrol.2008.11.014Gelhar LW, Axness CL (1983) Three-dimensional stochastic analysis of macrodispersion in aquifers. Water Resour Res 19:161–180. https://doi.org/10.1029/WR019i001p00161Gelhar LW, Welty C, Rehfeldt KR (1992) A critical review of data on field-scale dispersion in aquifers. Water Resour Res 28:1955–1974. https://doi.org/10.1029/92WR00607Giacheti HL, Rohm SA, Nogueira JB, Cintra JCA (1993) Geotechnical properties of the Cenozoic sediment (in protuguese). In: Albiero JH, Cintra JCA (eds) Soil from the interior of São Paulo. ABMS, Sao Paulo, pp 143–175Gómez-Hernandez JJ (1990) A stochastic approach to the simulation of block conductivity fields conditional upon data measured at a smaller scale. Stanford University, StanfordGómez-Hernández JJ, Gorelick SM (1989) Effective groundwater model parameter values: influence of spatial variabiity of hydraulic conductivity, leackance, and recharge. Water Resour Res 25:405–419Gómez-Hernández JJ, Journel A (1993) Joint sequential simulation of multigaussian fields. In: Geostatistics Tróia’92. pp 85–94. https://doi.org/10.1007/978-94-011-1739-5_8Gómez-Hernández JJ, Wen X-H (1994) Probabilistic assessment of travel times in groundwater modeling. Stoch Hydrol Hydraul 8:19–55. https://doi.org/10.1007/BF01581389Gómez-Hernández JJ, Fu J, Fernandez-Garcia D (2006) Upscaling retardation factors in 2-D porous media. In: Bierkens MFP, Gehrels JC, Kovar K (eds) Calibration and reliability in groundwater modelling: from uncertainty to decision making: proceedings of the ModelCARE 2005 conference held in The Hague, The Netherlands, 6–9 June, 2005. IAHS Publication, pp 130–136Goovaerts P (1999) Geostatistics in soil science: state-of-the-art and perspectives. Geoderma 89:1–45. https://doi.org/10.1016/S0016-7061(98)00078-0Jarvis NJ (2007) A review of non-equilibrium water fl ow and solute transport in soil macropores: principles, controlling factors and consequences for water quality. Eur J Soil Sci 58:523–546. https://doi.org/10.4141/cjss2011-050Jellali S, Diamantopoulos E, Kallali H, Bennaceur S, Anane M, Jedidi N (2010) Dynamic sorption of ammonium by sandy soil in fixed bed columns: evaluation of equilibrium and non-equilibrium transport processes. J Environ Manag 91:897–905. https://doi.org/10.1016/j.jenvman.2009.11.006Journel AG, Gomez-Hernandez JJ (1993) Stochastic imaging of the wilmington clastic sequence. SPE Form Eval 8:33–40. https://doi.org/10.2118/19857-PAJournel A, Deutsch C, Desbarats A (1986) Power averaging for block effective permeability. Proc SPE Calif Reg Meet. https://doi.org/10.2118/15128-MSKronberg BI, Fyfe WS, Leonardos OH, Santos AM (1979) The chemistry of some Brazilian soils: element mobility during intense weathering. Chem Geol 24:211–229. https://doi.org/10.1016/0009-2541(79)90124-4Lake LW (1988) The origins of anisotropy (includes associated papers 18394 and 18458). J Pet Technol 40:395–396. https://doi.org/10.2118/17652-PALawrence AE, Rubin Y (2007) Block-effective macrodispersion for numerical simulations of sorbing solute transport in heterogeneous porous formations. Adv Water Resour 30:1272–1285. https://doi.org/10.1016/j.advwatres.2006.11.005Lemke LD, Barrack WA II, Abriola LM, Goovaerts P (2004) Matching solute breakthrough with deterministic and stochastic aquifer models. Groundwater 42:920–934Li L, Zhou H, Gómez-Hernández JJ (2011a) A comparative study of three-dimensional hydraulic conductivity upscaling at the macro-dispersion experiment (MADE) site, Columbus Air Force Base, Mississippi (USA). J Hydrol 404:278–293. https://doi.org/10.1016/j.jhydrol.2011.05.001Li L, Zhou H, Gómez-Hernández JJ (2011b) Transport upscaling using multi-rate mass transfer in three-dimensional highly heterogeneous porous media. Adv Water Resour 34:478–489. https://doi.org/10.1016/j.advwatres.2011.01.001Logsdon Keller KE, Moorman TB (2002) Measured and predicted solute leaching from multiple undisturbed soil columns. Soil Sci Soc Am J 66:686–695. https://doi.org/10.2136/sssaj2002.6860Lourens A, van Geer FC (2016) Uncertainty propagation of arbitrary probability density functions applied to upscaling of transmissivities. Stoch Environ Res Risk Assess 30:237–249. https://doi.org/10.1007/s00477-015-1075-8Mahapatra IC, Singh KN, Pillai KG, Bapat SR (1985) Rice soils and their management. Indian J Agron 30:R1–R41Morakinyo JA, Mackay R (2006) Geostatistical modelling of ground conditions to support the assessment of site contamination. Stoch Environ Res Risk Assess 20:106–118. https://doi.org/10.1007/s00477-005-0015-4Moslehi M, de Barros FPJ, Ebrahimi F, Sahimi M (2016) Upscaling of solute transport in disordered porous media by wavelet transformations. Adv Water Resour 96:180–189. https://doi.org/10.1016/j.advwatres.2016.07.013Osinubi KJ, Nwaiwu CM (2005) Hydraulic conductivity of compacted lateritic soil. J Geotech Geoenviron Eng 131:1034–1041. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:8(1034)Remy N (2004) SGeMS: stanford geostatistical modeling software. Softw Man. https://doi.org/10.1007/978-1-4020-3610-1_89Renard P, de Marsily G (1997) Calculating equivalent permeability: a review. Adv Water Resour 20:253–278. https://doi.org/10.1016/S0309-1708(96)00050-4Robin MJL, Sudicky EA, Gillham RW, Kachanoski RG (1991) Spatial variability of strontium distribution coefficients and their correlation with hydraulic conductivity in the Canadian forces base borden aquifer. Water Resour Res 27:2619–2632. https://doi.org/10.1029/91WR01107Salamon P, Fernàndez-Garcia D, Gómez-Hernández JJ (2007) Modeling tracer transport at the MADE site: the importance of heterogeneity. Water Resour Res. https://doi.org/10.1029/2006WR005522Sánchez-Vila X, Carrera J, Girardi JP (1996) Scale effects in transmissivity. J Hydrol 183:1–22. https://doi.org/10.1016/S0022-1694(96)80031-XScheibe T, Yabusaki S (1998) Scaling of flow and transport behavior in heterogeneous groundwater systems. Adv Water Resour 22:223–238. https://doi.org/10.1016/S0309-1708(98)00014-1Selvadurai PA, Selvadurai APS (2014) On the effective permeability of a heterogeneous porous medium: the role of the geometric mean. Philos Mag 94:2318–2338. https://doi.org/10.1080/14786435.2014.913111Shackelford CD (1994) Critical concepts for column testing. J Geotech Eng 120:1804–1828. https://doi.org/10.1016/0148-9062(95)96996-OŠimůnek J, van Genuchten MT, Šejna M, Toride N, Leij FJ (1999) The STANMOD computer software for evaluating solute transport in porous media using analytical solutions of convection-dispersion equation. Riverside, CaliforniaTaskinen A, Sirviö H, Bruen M (2008) Modelling effects of spatial variability of saturated hydraulic conductivity on autocorrelated overland flow data: linear mixed model approach. Stoch Environ Res Risk Assess 22:67–82. https://doi.org/10.1007/s00477-006-0099-5Tuli A, Hopmans JW, Rolston DE, Moldrup P (2005) Comparison of air and water permeability between disturbed and undisturbed soils. Soil Sci Soc Am J 69:1361. https://doi.org/10.2136/sssaj2004.0332Tyukhova AR, Willmann M (2016) Conservative transport upscaling based on information of connectivity. Water Resour Res 52:6867–6880. https://doi.org/10.1002/2015WR018331van Genuchten MTh (1980) Determining transport parameters from solute displacement experiments. Research Report 118. U.S. Salinity Lab., Riverside, CAVanderborght J, Timmerman A, Feyen J (2000) Solute transport for steady-state and transient flow in soils with and without macropores. Soil Sci Soc Am J 64:1305–1317. https://doi.org/10.2136/sssaj2000.6441305xVanmarcke E (2010) Random fields: analysis and synthesis. World Scientific. MIT Press, Cambridge, MA, p 364Vishal V, Leung JY (2017) Statistical scale-up of 3D particle-tracking simulation for non-Fickian dispersive solute transport modeling. Environ Res Risk Assess, Stoch. https://doi.org/10.1007/s00477-017-1501-1Wen X-H, Gómez-Hernández JJ (1996) Upscaling hydraulic conductivities in heterogeneous media: an overview. J Hydrol 183:ix–xxxii. https://doi.org/10.1016/S0022-1694(96)80030-8Wen XH, Gómez-Hernández JJ (1998) Numerical modeling of macrodispersion in heterogeneous media: a comparison of multi-Gaussian and non-multi-Gaussian models. J Contam Hydrol 30:129–156. https://doi.org/10.1016/S0169-7722(97)00035-1Wen XH, Capilla JE, Deutsch CV, Gómez-Hernández JJ, Cullick AS (1999) A program to create permeability fields that honor single-phase flow rate and pressure data. Comput Geosci 25:217–230. https://doi.org/10.1016/S0098-3004(98)00126-5Wilding LP, Drees LR (1983) Spatial variability and pedology. In: Wilding LP, Smeck NE, Hall GF (eds) Pedogenesis and soil taxonomy: the soil orders. Elsevier, Amsterdam, pp 83–116Willmann M, Carrera J, Guadagnini A (2006) Block-upscaling of transport in heterogeneous aquifers. h2ogeo.upc.edu 1–7Xu Z, Meakin P (2013) Upscaling of solute transport in heterogeneous media with non-uniform flow and dispersion fields. Appl Math Model 37:8533–8542. https://doi.org/10.1016/j.apm.2013.03.070Zech A, Attinger S, Cvetkovic V, Dagan G, Dietrich P, Fiori A, Rubin Y, Teutsch G (2015) Is unique scaling of aquifer macrodispersivity supported by field data? Water Resour Res 51:7662–7679. https://doi.org/10.1002/2015WR017220Zhou H, Li L, Gómez-Hernández JJ (2010) Three-dimensional hydraulic conductivity upscaling in groundwater modeling. Comput Geosci 36:1224–1235. https://doi.org/10.1016/j.cageo.2010.03.008Zhou H, Li L, Hendricks Franssen H-J, Gómez-Hernández JJ (2012) Pattern recognition in a bimodal aquifer using the normal-score ensemble Kalman filter. Math Geosci 44:169–185. https://doi.org/10.1007/s11004-011-9372-
Genetic screens identify a context-specific PI3K/p27Kip1 node driving extrahepatic biliary cancer
Biliary tract cancer ranks among the most lethal human malignancies, representing an unmet clinical need. Its abysmal prognosis is tied to an increasing incidence and a fundamental lack of mechanistic knowledge regarding the molecular basis of the disease. Here, we show that the Pdx1-positive extrahepatic biliary epithelium is highly susceptible toward transformation by activated PIK3CAH1047R but refractory to oncogenic KrasG12D. Using genome-wide transposon screens and genetic loss-of-function experiments, we discover context-dependent genetic interactions that drive extrahepatic cholangiocarcinoma (ECC) and show that PI3K signaling output strength and repression of the tumor suppressor p27Kip1 are critical context-specific determinants of tumor formation. This contrasts with the pancreas, where oncogenic Kras in concert with p53 loss is a key cancer driver. Notably, inactivation of p27Kip1 permits KrasG12D-driven ECC development. These studies provide a mechanistic link between PI3K signaling, tissue-specific tumor suppressor barriers, and ECC pathogenesis, and present a novel genetic model of autochthonous ECC and genes driving this highly lethal tumor subtype
- …