4 research outputs found

    Design and construction of a monoatomic hydrogen beam

    Get PDF
    Eine der wichtigsten Grundpfeiler in der Physik sind Symmetrien. Eine dieser Sym- metrien,diesogenannteCPT Symmetrie,welcheamCERNinGenfvonderASACUSA Kollaboration getestet werden soll. Diese Tests werden in einem Rabi ähnlichen Exper- iment von ASACUSA mit Antiwasserstoff Atomen gemacht (Antiawasserstoff ist das Antimateriependent zu Wasserstoff). Da Antiwasserstoff in der Gewinnung sehr teuer ist, sollte das gesamte Experiment auch mit Wasserstoffatomen durchgeführt werden. Diese Diplomarbeit behandelt einen Aufbau für einen atomaren Wasserstoffstrahl und eine Quelle zur Produktion von monoatomaren Wasserstoff. Wasserstoffmoleküle werden durch Mikrowellen in einem Entladungsplasma zu Wasserstoffatomen zerteilt und dann als Wasserstoffstrahl in ein Vakuumsystem emittiert. Der Aufbau der in dieser Arbeit beschrieben wird, soll in der Zukunft die Basis für das Rabi ähnliche Experiment sein.One of the basic tenets in physics are symmetries. One of these symmetries the C P T symmetry is tested by the ASACUSA collaboration at the CERN facility. The test of CPT symmetrywillbedoneinanRabilikeexperimentbytheASACUSAcollaboration with antihydrogen atoms, the antimatter pendent to normal hydrogen atoms. Since the creation of antihydrogen atoms is very expensive the whole setup has to be tested with hydrogen. This thesis is about a atomic hydrogen beam setup, using a microwave discharge source for the production of a mono atomic hydrogen beam. With this source hydrogen molecules are split to hydrogen atoms in a discharge plasma by microwave radiation with a frequency of 2.45 GHz. After production the atoms escape as a hydrogen beam into a vacuum system. The setup described in this work will be the basis for the future Rabi like experiment

    An atomic hydrogen beam to test ASACUSA's apparatus for antihydrogen spectroscopy

    Full text link
    The ASACUSA collaboration aims to measure the ground state hyperfine splitting (GS-HFS) of antihydrogen, the antimatter pendant to atomic hydrogen. Comparisons of the corresponding transitions in those two systems will provide sensitive tests of the CPT symmetry, the combination of the three discrete symmetries charge conjugation, parity, and time reversal. For offline tests of the GS-HFS spectroscopy apparatus we constructed a source of cold polarised atomic hydrogen. In these proceedings we report the successful observation of the hyperfine structure transitions of atomic hydrogen with our apparatus in the earth's magnetic field.Comment: 8 pages, 4 figures, proceedings for conference EXA 2014 (Exotic Atoms - Vienna

    Annihilation detector for an in-beam spectroscopy apparatus to measure the ground state hyperfine splitting of antihydrogen

    Get PDF
    The matter-antimatter asymmetry observed in the universe today still lacks a quantitative explanation. One possible mechanism that could contribute to the observed imbalance is a violation of the combined Charge-, Parity- and Time symmetries (CPT). A test of CPT symmetry using anti-atoms is being carried out by the ASACUSA-CUSP collaboration at the CERN Antiproton Decelerator using a low temperature beam of antihydrogen—the most simple atomic system built only of antiparticles. While hydrogen is the most abundant element in the universe, antihydrogen is produced in very small quantities in a laboratory framework. A detector for in-beam measurements of the ground state hyperfine structure of antihydrogen has to be able to detect very low signal rates within high background. To fulfil this challenging task, a two layer barrel hodoscope detector was developed. It is built of plastic scintillators with double sided readout via Silicon Photomultipliers (SiPMs). The SiPM readout is done using novel, compact and cost efficient electronics that incorporate power supply, amplifier and discriminator on a single board. This contribution will evaluate the performance of the new hodoscope detector
    corecore