16 research outputs found

    Tuftsin Promotes an Anti-Inflammatory Switch and Attenuates Symptoms in Experimental Autoimmune Encephalomyelitis

    Get PDF
    Multiple sclerosis (MS) is a demyelinating autoimmune disease mediated by infiltration of T cells into the central nervous system after compromise of the blood-brain barrier. We have previously shown that administration of tuftsin, a macrophage/microglial activator, dramatically improves the clinical course of experimental autoimmune encephalomyelitis (EAE), a well-established animal model for MS. Tuftsin administration correlates with upregulation of the immunosuppressive Helper-2 Tcell (Th2) cytokine transcription factor GATA-3. We now show that tuftsin-mediated microglial activation results in shifting microglia to an anti-inflammatory phenotype. Moreover, the T cell phenotype is shifted towards immunoprotection after exposure to tuftsin-treated activated microglia; specifically, downregulation of pro-inflammatory Th1 responses is triggered in conjunction with upregulation of Th2-specific responses and expansion of immunosuppressive regulatory T cells (Tregs). Finally, tuftsin-shifted T cells, delivered into animals via adoptive transfer, reverse the pathology observed in mice with established EAE. Taken together, our findings demonstrate that tuftsin decreases the proinflammatory environment of EAE and may represent a therapeutic opportunity for treatment of MS

    Oligodendrocytes: biology and pathology

    Get PDF
    Oligodendrocytes are the myelinating cells of the central nervous system (CNS). They are the end product of a cell lineage which has to undergo a complex and precisely timed program of proliferation, migration, differentiation, and myelination to finally produce the insulating sheath of axons. Due to this complex differentiation program, and due to their unique metabolism/physiology, oligodendrocytes count among the most vulnerable cells of the CNS. In this review, we first describe the different steps eventually culminating in the formation of mature oligodendrocytes and myelin sheaths, as they were revealed by studies in rodents. We will then show differences and similarities of human oligodendrocyte development. Finally, we will lay out the different pathways leading to oligodendrocyte and myelin loss in human CNS diseases, and we will reveal the different principles leading to the restoration of myelin sheaths or to a failure to do so

    M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination

    Get PDF
    The lack of therapies for progressive multiple sclerosis highlights the need to understand the regenerative process of remyelination that can follow CNS demyelination. This involves an innate immune response consisting of microglia/macrophages, which can be polarized to distinct functional phenotypes: proinflammatory (M1) or anti-inflammatory/immunoregulatory (M2). Here we show that a switch from an M1- to M2-dominant response occurred within microglia and peripherally-derived macrophages as remyelination started. Oligodendrocyte differentiation was enhanced in vitro with M2 conditioned media, and impaired in vivo following intra-lesional M2 depletion. M2 densities were increased in lesions of aged mice in which remyelination was enhanced by parabiotic coupling to a younger animal, and in MS lesions that normally show remyelination. Blocking M2-derived activin-A inhibited oligodendrocyte differentiation during remyelination in cerebellar slice cultures. Our results therefore show that M2 polarization is essential for efficient remyelination and identify activin-A as a novel therapeutic target for CNS regeneration

    Growth Factors and Pain

    No full text
    corecore