20 research outputs found

    Diagnostic Pitfalls in Newborns and Babies with Blisters and Erosions

    Get PDF
    Establishing the correct diagnosis in newborns presenting with blisters and erosions is not always a straightforward process. Many different disease entities including acquired (i.e., infectious, immunobullous, traumatic) and inherited disorders have to be taken into consideration. Similarities in clinical appearance, colonization and/or superinfections of preexisting skin lesions, as well as the absence of late changes in the neonate often pose significant diagnostic challenges. In this paper we discuss by giving examples the process of making an accurate diagnosis of blistering skin diseases in the neonatal period on the basis of a diagnostic algorithm. In addition, we provide an overview of the rational use and the limitations of laboratory procedures such as microbial testing, routine light microscopy, immunofluorescence antigen mapping, transmission electron microscopy, and molecular genetic analysis

    Closure of a Large Chronic Wound through Transplantation of Gene-Corrected Epidermal Stem Cells

    Get PDF
    Generalized junctional epidermolysis bullosa (JEB) is caused by mutations in LAMA3,LAMB3,or LAMC2,which together encode laminin-332, a hetero-trimeric protein consisting ofa3,b3, andg2chain. In nonlethal generalized intermediate JEB, laminin-332 is highly reduced, and hemidesmosomes are rudimentary or completely absent, leading to blister formation within the lamina lucida of the basement membrane upon minor trauma. The resulting chronic skin wounds invariably develop recurrent infections and scarring, which greatly impair patients’ quality of life. We report on a patient in whom gene-corrected epidermal sheets were transplanted onto a large nonhealing epidermal ulceration following a good manufacturing practice protoco

    Immune signatures predict development of autoimmune toxicity in patients with cancer treated with immune checkpoint inhibitors.

    Get PDF
    BACKGROUND Immune checkpoint inhibitors (ICIs) are among the most promising treatment options for melanoma and non-small cell lung cancer (NSCLC). While ICIs can induce effective anti-tumor responses, they may also drive serious immune-related adverse events (irAEs). Identifying biomarkers to predict which patients will suffer from irAEs would enable more accurate clinical risk-benefit analysis for ICI treatment and may also shed light on common or distinct mechanisms underpinning treatment success and irAEs. METHODS In this prospective multi-center study, we combined a multi-omics approach including unbiased single-cell profiling of over 300 peripheral blood mononuclear cell (PBMC) samples and high-throughput proteomics analysis of over 500 serum samples to characterize the systemic immune compartment of patients with melanoma or NSCLC before and during treatment with ICIs. FINDINGS When we combined the parameters obtained from the multi-omics profiling of patient blood and serum, we identified potential predictive biomarkers for ICI-induced irAEs. Specifically, an early increase in CXCL9/CXCL10/CXCL11 and interferon-γ (IFN-γ) 1 to 2 weeks after the start of therapy are likely indicators of heightened risk of developing irAEs. In addition, an early expansion of Ki-67+ regulatory T cells (Tregs) and Ki-67+ CD8+ T cells is also likely to be associated with increased risk of irAEs. CONCLUSIONS We suggest that the combination of these cellular and proteomic biomarkers may help to predict which patients are likely to benefit most from ICI therapy and those requiring intensive monitoring for irAEs. FUNDING This work was primarily funded by the European Research Council, the Swiss National Science Foundation, the Swiss Cancer League, and the Forschungsförderung of the Kantonsspital St. Gallen

    Cells from discarded dressings differentiate chronic from acute wounds in patients with Epidermolysis Bullosa

    Get PDF
    Impaired wound healing complicates a wide range of diseases and represents a major cost to healthcare systems. Here we describe the use of discarded wound dressings as a novel, cost effective, accessible, and non-invasive method of isolating viable human cells present at the site of skin wounds. By analyzing 133 discarded wound dressings from 51 patients with the inherited skin-blistering disease epidermolysis bullosa (EB), we show that large numbers of cells, often in excess of 100 million per day, continually infiltrate wound dressings. We show, that the method is able to differentiate chronic from acute wounds, identifying significant increases in granulocytes in chronic wounds, and we show that patients with the junctional form of EB have significantly more cells infiltrating their wounds compared with patients with recessive dystrophic EB. Finally, we identify subsets of granulocytes and T lymphocytes present in all wounds paving the way for single cell profiling of innate and adaptive immune cells with relevance to wound pathologies. In summary, our study delineates findings in EB that have potential relevance for all chronic wounds, and presents a method of cellular isolation that has wide reaching clinical application

    Target Expression, Generation, Preclinical Activity, and Pharmacokinetics of the BCMA-T Cell Bispecific Antibody EM801 for Multiple Myeloma Treatment

    Get PDF
    We identified B cell maturation antigen (BCMA) as a potential therapeutic target in 778 newly diagnosed and relapsed myeloma patients. We constructed an IgG-based BCMA-T cell bispecific antibody (EM801) and showed that it increased CD3+ T cell/myeloma cell crosslinking, followed by CD4+/CD8+ T cell activation, and secretion of interferon-γ, granzyme B, and perforin. This effect is CD4 and CD8 T cell mediated. EM801 induced, at nanomolar concentrations, myeloma cell death by autologous T cells in 34 of 43 bone marrow aspirates, including those from high-risk patients and patients after multiple lines of treatment, tumor regression in six of nine mice in a myeloma xenograft model, and depletion of BCMA+ cells in cynomolgus monkeys. Pharmacokinetics and pharmacodynamics indicate weekly intravenous/subcutaneous administration

    Implementation of machine learning to improve the decision-making process of end-of-usage products in the circular economy

    Get PDF
    Rising consumption due to a growing world population and increasing prosperity, combined with a linear economic system have led to a sharp increase in garbage collection, general pollution of the environment and the threat of resource scarcity. At the same time, the perception of environmental protection becomes more sensitive as the consequences of neglecting sustainable business and eco-efficiency become more visible. The Circular Economy (CE) could reduce waste production and is able to decouple economic growth from resource consumption, but most of the products currently in use are not designed for the reuse-forms of the CE. In addition, the decision-making process of the End of-Usage (EoU) products regarding the following steps has further weaknesses in terms of economic attractiveness for the participants, which leads to low return rates and thus the disposal is often the only alternative. This paper proposes a model of the decision-making process, which uses machine learning. For this purpose, a Machine Learning (ML) classification is created, by applying the waterfall model. An artificial neural network (ANN) uses information about the model, use phase and the obvious symptoms of the product to predict the condition of individual components. The resulting information can be used in a downstream economic and ecological evaluation to assess the possible next steps. To test this process comprehensive training data is simulated to train the ANN. The decentralized implementation, cost savings and the possibility of an incentive system for the return of an end-of-usage product could lead to increased return rates. Since electronic devices in particular are attractive for the CE, laptops are the reference object of this work. However, the obtained findings are easily applicable to other electronic devices

    Basal pharmacokinetic parameters of topically applied diacerein in pediatric patients with generalized severe epidermolysis bullosa simplex

    No full text
    Abstract Generalized severe epidermolysis bullosa simplex (EBS-gen sev) is caused by mutations within either the KRT5 or KRT14 gene, phenotypically resulting in blistering and wounding of the skin and mucous membranes after minor mechanical friction. In a clinical phase 2/3 trial, diacerein has recently been shown to significantly reduce blister numbers upon topical application. In this study we addressed basic pharmacokinetic parameters of locally applied diacerein in vitro and in vivo. Ex vivo experiments using a Franz diffusion cell confirmed the uptake and bio-transformation of diacerein to rhein in a porcine skin model. Rhein, the active metabolite of diacerein, was also detected in both urine and serum samples of two EBS-gen sev patients who topically applied a 1% diacerein ointment over a period of 4 weeks. The accumulated systemic levels of rhein in EBS-gen sev patients were lower than reported levels after oral application. These preliminary findings point towards the uptake and prolonged persistance of diacerein / rhein within the intended target organ - the skin. Further, they imply an acceptable safety profile at the systemic level. Trial registration DRKS. DRKS00005412. Registered 6 November 2013
    corecore