20 research outputs found

    Tracing wedge-internal deformation by means of strontium isotope systematics of vein carbonates

    Get PDF
    Radiogenic strontium isotopes (87Sr/86Sr) of vein carbonates play a central role in the tectonometamorphic study of fold-and-thrust belts and accretionary wedges and have been used to document fluid sources and fluxes, for example, along major fault zones. In addition, the 87Sr/86Sr ratios of vein carbonates can trace the diagenetic to metamorphic evolution of pore fluids in accreted sediments. Here we present 87Sr/86Sr ratios of vein carbonates from the Infrahelvetic flysch units of the central European Alps (Glarus Alps, Switzerland), which were accreted to the North Alpine fold-and-thrust belt during the early stages of continental collision. We show that the vein carbonates trace the Sr isotopic evolution of pore fluids from an initial seawater-like signature towards the Sr isotopic composition of the host rock with increasing metamorphic grade. This relationship reflects the progressive equilibration of the pore fluid with the host rock and allows us to constrain the diagenetic to low-grade metamorphic conditions of deformation events, including bedding-parallel shearing, imbricate thrusting, folding, cleavage development, tectonic mélange formation and extension. The strontium isotope systematics of vein carbonates provides new insights into the prograde to early retrograde tectonic evolution of the Alpine fold-and-thrust belt and helps to understand the relative timing of deformation events. © The Author(s), 2022. Published by Cambridge University Press

    Tracing wedge-internal deformation by means of strontium isotope systematics of vein carbonates

    Get PDF
    Radiogenic strontium isotopes (87Sr/86Sr) of vein carbonates play a central role in the tectonometamorphic study of fold-and-thrust belts and accretionary wedges and have been used to document fluid sources and fluxes, for example, along major fault zones. In addition, the 87Sr/86Sr ratios of vein carbonates can trace the diagenetic to metamorphic evolution of pore fluids in accreted sediments. Here we present 87Sr/86Sr ratios of vein carbonates from the Infrahelvetic flysch units of the central European Alps (Glarus Alps, Switzerland), which were accreted to the North Alpine fold-and-thrust belt during the early stages of continental collision. We show that the vein carbonates trace the Sr isotopic evolution of pore fluids from an initial seawater-like signature towards the Sr isotopic composition of the host rock with increasing metamorphic grade. This relationship reflects the progressive equilibration of the pore fluid with the host rock and allows us to constrain the diagenetic to low-grade metamorphic conditions of deformation events, including bedding-parallel shearing, imbricate thrusting, folding, cleavage development, tectonic mélange formation and extension. The strontium isotope systematics of vein carbonates provides new insights into the prograde to early retrograde tectonic evolution of the Alpine fold-and-thrust belt and helps to understand the relative timing of deformation events

    LGM ice extent and deglaciation history in the Gurktal and Lavantal Alps (eastern European Alps): first constraints from 10Be surface exposure dating of glacially polished quartz veins

    Get PDF
    Compared with the western European Alps, the ice extent during the Last Glacial Maximum (LGM) and the subsequent deglaciation history of the eastern Alps east of the Tauern Window remain less well constrained. Also, considerable discrepancies exist between the mapped LGM ice margin and the ice extent predicted by ice-sheet models. Here we present the first 10Be surface exposures ages from two regions east of the Tauern Window (the Gurktal and Lavantal Alps), which provide constraints on the LGM ice extent and the deglaciation history. Our results show that the deglaciation of the Gurktal Alps occurred between 16 and 14 ka, which agrees with the predictions from ice-sheet models. In contrast, the 10Be ages from the Lavantal Alps located farther east are either LGM in age or predate the LGM, indicating that these regions were ice free or only partially covered by LGM ice. This finding suggests that ice-sheet models may have overestimated the LGM ice extent in the easternmost Alps. In conclusion, our study highlights the need for more age data from the eastern Alps to refine the location of the LGM ice margin and the deglaciation history, which is also crucial for climate-evolution and postglacial-rebound models

    Slow Slip Triggers the 2018 Mw 6.9 Zakynthos Earthquake Within the Weakly Locked Hellenic Subduction System, Greece

    Get PDF
    Slow slip events (SSEs) at subduction zones can precede large-magnitude earthquakes and may serve as precursor indicators, but the triggering of earthquakes by slow slip remains insufficiently understood. Here, we combine geodetic, Coulomb wedge and Coulomb failure-stress models with seismological data to explore the potential causal relationship between two SSEs and the 2018 Mw 6.9 Zakynthos Earthquake within the Hellenic Subduction System. We show that both SSEs released up to 10 mm of aseismic slip on the plate-interface and were accompanied by an increase in upper-plate seismicity rate. While the first SSE in late 2014 generated only mild Coulomb failure stress changes (≤3 kPa), that were nevertheless sufficient to destabilize faults of various kinematics in the overriding plate, the second SSE in 2018 caused stress changes up to 25 kPa prior to the mainshock. Collectively, these stress changes affected a highly overpressured and mechanically weak forearc, whose state of stress fluctuated between horizontal deviatoric compression and tension during the years preceding the Zakynthos Earthquake. We conclude that this configuration facilitated episodes of aseismic and seismic deformation that ultimately triggered the Zakynthos Earthquake

    Deep weathering in the semi-arid Coastal Cordillera, Chile

    Get PDF
    The weathering front is the boundary beneath Earth’s surface where pristine rock is converted into weathered rock. It is the base of the “critical zone”, in which the lithosphere, biosphere, and atmosphere interact. Typically, this front is located no more than 20 m deep in granitoid rock in humid climate zones. Its depth and the degree of rock weathering are commonly linked to oxygen transport and fluid flow. By drilling into fractured igneous rock in the semi-arid climate zone of the Coastal Cordillera in Chile we found multiple weathering fronts of which the deepest is 76 m beneath the surface. Rock is weathered to varying degrees, contains core stones, and strongly altered zones featuring intensive iron oxidation and high porosity. Geophysical borehole measurements and chemical weathering indicators reveal more intense weathering where fracturing is extensive, and porosity is higher than in bedrock. Only the top 10 m feature a continuous weathering gradient towards the surface. We suggest that tectonic preconditioning by fracturing provided transport pathways for oxygen to greater depths, inducing porosity by oxidation. Porosity was preserved throughout the weathering process, as secondary minerals were barely formed due to the low fluid flow

    Evolution of a low convergence collisional orogen: a review of Pyrenean orogenesis

    Get PDF
    The Pyrenees is a collisional orogen built by inversion of an immature rift system during convergence of the Iberian and European plates from Late Cretaceous to late Cenozoic. The full mountain belt consists of the pro-foreland southern Pyrenees and the retro-foreland northern Pyrenees, where the inverted lower Cretaceous rift system is mainly preserved. Due to low overall convergence and absence of oceanic subduction, this orogen preserves one of the best geological records of early orogenesis, the transition from early convergence to main collision and the transition from collision to post-convergence. During these transitional periods major changes in orogen behavior reflect evolving lithospheric processes and tectonic drivers. Contributions by the OROGEN project have shed new light on these critical periods, on the evolution of the orogen as a whole, and in particular on the early convergence stage. By integrating results of OROGEN with those of other recent collaborative projects in the Pyrenean domain (e.g., PYRAMID, PYROPE, RGF-Pyrénées), this paper offers a synthesis of current knowledge and debate on the evolution of this immature orogen as recorded in the synorogenic basins and fold and thrust belts of both the upper European and lower Iberian plates. Expanding insight on the role of salt tectonics at local to regional scales is summarised and discussed. Uncertainties involved in data compilation across a whole orogen using different datasets are discussed, for example for deriving shortening values and distribution

    The deglaciation history of the Simplon region (southern Swiss Alps) constrained by 10Be exposure dating of ice-molded bedrock surfaces

    No full text
    The deglaciation history of the Swiss Alps after the Last Glacial Maximum involved the decay of several ice domes and the subsequent disintegration of valley glaciers at high altitude. Here we use bedrock exposure dating to reconstruct the temporal and spatial pattern of ice retreat at the Simplon Pass (altitude: ∼2000 m) located 40 km southwest of the ‘Rhône ice dome’. Eleven 10Be exposure ages from glacially polished quartz veins and ice-molded bedrock surfaces cluster tightly between 13.5 ± 0.6 ka and 15.4 ± 0.6 ka (internal errors) indicating that the Simplon Pass depression became ice-free at 14.1 ± 0.4 ka (external error of mean age). This age constraint is interpreted to record the melting of the high valley glaciers in the Simplon Pass region during the warm Bølling–Allerød interstadial shortly after the Oldest Dryas stadial. Two bedrock samples collected a few hundred meters above the pass depression yield older 10Be ages of 17.8 ± 0.6 ka and 18.0 ± 0.6 ka. These ages likely reflect the initial downwasting of the Rhône ice dome and the termination of the ice transfluence from the ice dome across the Simplon Pass toward the southern foreland. There, the retreat of the piedmont glacier in Val d’Ossola was roughly synchronous with the decay of the Rhône ice dome in the interior of the mountain belt, as shown by 10Be ages of 17.7 ± 0.9 ka and 16.1 ± 0.6 ka for a whaleback at ∼500 m elevation near Montecrestese in northern Italy. In combination with well-dated paleoclimate records derived from lake sediments, our new age data suggest that during the deglaciation of the European Alps the decay of ice domes was approximately synchronous with the retreat of piedmont glaciers in the foreland and was followed by the melting of high-altitude valley glaciers after the transition from the Oldest Dryas to the Bølling–Allerød, when mean annual temperatures rose rapidly by ∼3 °C

    Formation of the Iberian-European Convergent Plate Boundary Fault and Its Effect on Intraplate Deformation in Central Europe

    No full text
    International audienceWith the Late Cretaceous onset of Africa-Iberia-Europe convergence Central Europe experienced a pulse of intraplate shortening lasting some 15-20 Myr. This deformation event documents area-wide deviatoric compression of Europe and has been interpreted as a far-field response to Africa-Iberia-Europe convergence. However, the factors that governed the compression of Europe and conditioned the transient character of the deformation event have remained unclear. Based on mechanical considerations, numerical simulations, and geological reconstructions, we examine how the dynamics of intraplate deformation were governed by the formation of a convergent plate boundary fault between Iberia and Europe. During the Late Cretaceous, plate convergence was accommodated by the inversion of a young hyperextended rift system separating Iberia from Europe. Our analysis shows that the strength of the lithosphere beneath this rift was initially sufficient to transmit large compressive stresses far into Europe, though the lithosphere beneath the rift was thinned and thermally weakened. Continued convergence forced the formation of the plate boundary fault between Iberia and Europe. The fault evolved progressively and constituted a lithospheric-scale structure at the southern margin of Europe that weakened rheologically. This development caused a decrease in mechanical coupling between Iberia and Europe and a reduction of compressional far field stresses, which eventually terminated intraplate deformation in Central Europe. Taken together, our findings suggest that the Late Cretaceous intraplate deformation event records a high force transient that relates to the earliest strength evolution of a lithospheric-scale plate boundary fault

    Linking megathrust earthquakes to brittle deformation in a fossil accretionary complex

    Get PDF
    Seismological data from recent subduction earthquakes suggest that megathrust earthquakes induce transient stress changes in the upper plate that shift accretionary wedges into an unstable state. These stress changes have, however, never been linked to geological structures preserved in fossil accretionary complexes. The importance of coseismically induced wedge failure has therefore remained largely elusive. Here we show that brittle faulting and vein formation in the palaeo-accretionary complex of the European Alps record stress changes generated by subduction-related earthquakes. Early veins formed at shallow levels by bedding-parallel shear during coseismic compression of the outer wedge. In contrast, subsequent vein formation occurred by normal faulting and extensional fracturing at deeper levels in response to coseismic extension of the inner wedge. Our study demonstrates how mineral veins can be used to reveal the dynamics of outer and inner wedges, which respond in opposite ways to megathrust earthquakes by compressional and extensional faulting, respectively
    corecore