
1.  Introduction
Over the last two decades, an increasing body of evidence shows that subduction megathrusts, in addition 
to breaking due to large-magnitude (M > 7) earthquakes or creeping aseismically, may also release strain 
through slow slip events (SSEs) (Dragert et al., 2001; Heki et al., 1997; Hirose et al., 1999; Ohta et al., 2006; 
Radiguet et al., 2012; Uchida et al., 2016; Wallace & Beavan, 2010). This occurs when the plate-interface 
slips at rates lower than those required to generate seismic energy (Heki et al., 1997), often releasing, over 
time periods of days to years, seismic moment equivalent to earthquakes of Mw 6–7.5 (Dragert et al., 2001; 
Peng & Gomberg, 2010). SSEs mainly occur around the downdip and updip limits of the seismogenic zone, 
which typically characterize regions of the megathrust that are dominated by conditionally stable friction 
(Scholz, 1998; Schwartz & Rokosky, 2007). Evidence of SSEs has been observed in a wide range of tectonic 
regimes and at different stages of the earthquake cycle, associated mainly with fluctuations in pore fluid 
pressure, frictionally weak materials and the stress-state of the fault (Bürgmann, 2018).

The release of strain through SSEs can transfer stress to the seismogenic zone capable of triggering 
large-magnitude (M  >  6) earthquakes (Bouchon et  al.,  2013; Cruz-Atienza et  al.,  2021; Mazzotti & Ad-
ams, 2004; Segall & Bradley, 2012). On the other hand, seismic moment released episodically through one 
or more SSEs may also delay earthquake rupture or result in numerous smaller-sized (M < 6) earthquakes 
(Dixon & Moore, 2007; Obara & Kato, 2016; Radiguet et al., 2012). Thus, exploring the role of aseismic 
deformation in triggering large-magnitude earthquakes is crucial for better quantifying time-dependent 
seismic hazard.

The factors that control the duration and spatial extent of aseismic deformation over the earthquake 
cycle are still not well understood, mainly due to limited data. This issue is amplified in cases in which 
slow slip occurs within complex tectonic settings that include faults of various kinematics and slip rates. 
Such settings often typify terminations of active subduction zones, where plate-motion is partitioned be-
tween the plate-interface and the overriding plate, producing complex fault and rupture patterns (Mann & 
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Frohlich, 1999; Mouslopoulou et al., 2019, 2020; Wallace et al., 2012). The October 25, 2018 Mw 6.9 Zakyn-
thos Earthquake in Greece (Figure 1), provides a rare example of a composite earthquake that ruptured a 
subduction termination following the synergy of SSEs, earthquake swarms and fault interactions (Figure 1) 
(Mouslopoulou et al., 2020).

The Zakynthos mainshock is characterized by an oblique mechanism, with a significant non double-couple 
component (Figure 1) that results from slip on two individual fault sources: a thrust and a strike-slip (Mous-
lopoulou et al., 2020; Sokos et al., 2020). Decomposition of this moment tensor (Mouslopoulou et al., 2020) 
suggests a relatively steep dip angle (∼45°) for the thrust subevent, which could be compatible with a splay-
thrust fault (Cirella et  al.,  2020; Mouslopoulou et  al.,  2020). Although there is an ongoing debate as to 
whether the thrust component of slip was accommodated by a splay-thrust fault or the plate-interface itself 
(Cirella et al., 2020; Ganas et al., 2020; Mouslopoulou et al., 2020; Sokos et al., 2020), we favor the former 
scenario as it is supported by: (a) seismic reflection and bathymetric data that reveal numerous NNW-SSE 
trending thrusts that dip 30°–50° to the northeast, beneath Zakynthos and western Peloponnese (Mous-
lopoulou et al., 2020 and references therein; Figure S1 in Supporting Information S1), (b) the recording 
of a minor tsunami along the western coastline of Peloponnese that suggests displacement of the sea-bed 
(Cirella et  al.,  2020), and (c) the thrust focal mechanisms resolved for a cluster of aftershocks north of 
the mainshock hypocenter that mainly span depths of 5–15 km (Figure S1 in Supporting Information S1) 
(Mouslopoulou et al., 2020).

The SSEs that preceded the 2018 Zakynthos Earthquake were the first to be reported within the Hellenic 
Subduction System (HSS) and are thought to be responsible for ∼4 years of tectonic unrest leading up to the 
Mw 6.9 mainshock (Figure 1) (Mouslopoulou et al., 2020). Nevertheless, the causal relationship between 
the SSEs and the 2018 mainshock, as well as the mechanical state of the forearc that hosted this tectonic 
unrest, remain unexplored and are the foci of this paper. Here, we combine geodetic, Coulomb wedge and 
Coulomb failure-stress models with earthquake statistics to quantitatively show that both SSEs occurred on 
the plate-interface at depths ranging from 15 to 40 km and caused stress perturbations capable of gradually 
“unlocking” the mechanically fragile Hellenic forearc and trigger the 2018 Zakynthos Earthquake. These 
findings may be important for other weakly locked subduction margins worldwide.

2.  Results
2.1.  GPS Transient Signals

Mouslopoulou et al. (2020) reported the occurrence of two long-lived (∼5 months each) transient signals 
beneath western Peloponnese during the ∼4 years preceding the 2018 Zakynthos Earthquake on the basis 
of GPS observations (Figure 1b, Figure S2 in Supporting Information S1). The first recorded transient oc-
curred from September 2014 to March 2015 and was followed by a clear drop in the b-value (Mouslopou-
lou et al., 2020) within the study area (Figure 1c). The second occurred during the ∼5 months preceding 
the Zakynthos mainshock (Figure 1c). Transients comprised successive phases of landward and trench-
ward acceleration (of ∼2–3 months each), with the trenchward motion revealing SSEs at depth (Figure 1c; 
Mouslopoulou et  al.,  2020). The tectonic origin of these transient signals was extensively tested against 
hydrological and seasonal effects, reference-frame errors and different processing codes (see Supporting 
Information S1 in Mouslopoulou et al. [2020]). Evidence of a transient signal in northwest Peloponnese in 
May 2018, is also reported by Briole et al. (2021).

The transient signals, reported by Mouslopoulou et al. (2020), were recovered from the median of a total of 
250 trajectory models, using the Greedy Automatic Signal Decomposition algorithm (GrAtSiD) (Bedford & 
Bevis, 2018). This algorithm decomposes, using a linear regression, the GPS signal into (a) the seasonal os-
cillation signal; (b) the secular and transient motions, and (c) the residual (noise) signal. Our analysis shows 
that the average noise ranges between 1–2 and 3–5 mm for the horizontal and vertical components, respec-
tively. Therefore, the Signal/Noise ratio (SNR) of the largest detected horizontal transients in Zakynthos 
Island and northwest Peloponnese (Figure 1b) ranges between 1 and 4, indicating that, at least, the largest 
values in the observed displacement gradient (Figure 1b) are above the GPS noise level. Furthermore, power 
spectrum analysis of the GPS noise signal of the final trajectory model across all stations, shows that the 
noise signal is dominated by white noise (Gaussian noise) at higher frequencies (for f > ∼10−2 1/day, that 
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Figure 1.  Summary of the 4-year long preparatory phase of the 2018 Zakynthos Earthquake. (a) Map of the study area summarizing the 2018 Zakynthos 
mainshock (large green beachball) and focal mechanisms of the M > 4 earthquakes that occurred during the preparatory phase (red: reverse, green: strike-slip, 
blue: normal) (Mouslopoulou et al., 2020; white filling) (NOA repository; cyan filling). Offshore faulting is modified from Mouslopoulou et al. (2020). Relocated 
seismicity is denoted by gray dots (M ≥ 2). Depth contours of the top of the plate-interface are indicated by gray dashed lines (Halpaap et al., 2019). Inset: 
The study area is located at the western termination of the Hellenic Subduction System (HSS). Z = Zakynthos Island. (b) Cumulative trenchward transient 
displacements as derived from Mouslopoulou et al. (2020) for the 2014–2015 and 2018 SSEs, together with their uncertainties (1-sigma). (c) Spatiotemporal 
evolution of daily velocities along the east component of near-field GPS stations from south to north. (e) Histograms of the number of events as a function of 
time within areas d1-d3 in (a). The end of the x-axes in (c and d) marks the timing of the 2018 Zakynthos Earthquake (red star).
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is, T < ∼100 days) (Figure S3 in Supporting Information S1). Given the assumption that the non-tectonic, 
non-seasonal noise has a Gaussian (white) distribution, the recovery of Gaussian residuals by the GrAtSiD 
trajectory model in this case indicates an appropriate fitting of the time series (Bedford & Bevis, 2018) for 
the frequencies of interest (2–3 months long). Accordingly, under- or over-fitting of the time series would 
be indicated by a residual with flicker (pink) noise spectral characteristics (Bedford & Bevis, 2018). While 
a flicker noise spectrum is commonly assumed to be the dominant noise signature in GNSS displacement 
time series (Dmitrieva et al., 2015; Langbein, 2008), it was demonstrated in Bedford and Bevis (2018) that 
this assumption could be an artifact of signal decomposition in which tectonic and seasonal signals leak 
into the assumed noise portion of the signal, and that an assumption of Gaussian noise is just as valid as 
an assumption of flicker noise for the non-seasonal, non-tectonic portion of the signal. Thus, this analysis 
demonstrates that the detection of transients by Mouslopoulou et al. (2020) is clearly above the data noise 
level.

2.2.  Geodetic Modeling of the Slow Slip Events (SSEs)

Here, we adopt the cumulative GPS displacements derived by Mouslopoulou et al. (2020) for the trench-
ward phase of the transient signal (Figure 1b; Figure S2 in Supporting Information S1), to constrain the 
spatial extent and size of the two SSEs. We invert the GPS displacements (Figure 2) for variable distributed 
slip at depth, assuming an elastic homogeneous half-space (Okada, 1985) and using the SDM2011 software 
(Wang et al., 2009). The modeled geometries of the plate-interface and upper-plate faults were constrained 
by combining data from seismic tomography (Halpaap et al., 2018, 2019), seismicity distribution (Bocchini 
et al., 2018), moment tensors and analysis of seismic reflection profiles (Mouslopoulou et al., 2020).

After testing for various kinematic scenarios, including synchronous slip on the plate-interface and up-
per-plate faults (Text S1 in Supporting Information S1), we derive our preferred model which resolves for 
transient aseismic slip on the plate-interface (Figure 2). Both the 2014–2015 and 2018 SSEs show similar 
spatial distribution patterns that involve slow slip extending (a) along western Peloponnese at plate-inter-
face depths of ∼20–40 km and (b) between west of Zakynthos Island and NW Peloponnese at shallower 
plate-interface depths (∼15–20 km) (Figures 2a and 2b). We obtain average slip of 3 and 4 mm for the 2014–
2015 and 2018 SSEs, respectively. The 2014–2015 transient is associated with locally maximum slip of 9 mm 
at depths of ∼25 km (offshore NW Peloponnese) whereas maximum slip of 10 mm is modeled for the 2018 
transient at depths of ∼30 km beneath western Peloponnese (Figure 2). The total geodetic moment released 
by the SSEs is 4.3 × 1018 Nm (2014–2015 SSE) and 3.8 × 1018 Nm (2018 SSE), corresponding, for each SSE, to 
an earthquake of Mw 6.4, consistent with results in Mouslopoulou et al. (2020). Both, the duration and the 
geodetic moment associated with each modeled SSE plot, in agreement with other SSEs reported globally 
(Figure S9 in Supporting Information S1) (Peng & Gomberg, 2010).

The downdip extent of aseismic slip is also constrained by the distribution of vertical displacements which, 
despite their significant uncertainties, clearly indicate a change in their polarity, from broad uplift west of 
the ∼40 km plate-interface isodepth to broad subsidence east of it (Figure 2c). This reversal in the polarity 
of the vertical motion has been recognized in other subduction systems to straddle the rheological boundary 
from stick-slip to creep (i.e. Wallace & Beavan, 2006). Hence, combining this information (i.e., reversal in 
the vertical motion and no slip at depths greater than 40 km) we constrain the frictional-to-viscous transi-
tion zone beneath western Peloponnese at ∼30–40 km depth. The updip extent of the SSEs is modeled at a 
depth of ∼15 km, extending beneath the island of Zakynthos and western Peloponnese.

Although our analysis suggests that aseismic slip is released on the plate-interface and explains most of 
the geodetic signal through this scenario (Figure 2), an alternative scenario in which aseismic slip may 
be also partly accommodated on upper-plate faults cannot be excluded (see Figures S7 and S8 in Support-
ing Information S1) (Bürgmann, 2018; Hamling & Wallace, 2015; Mouslopoulou et al., 2020; Shaddox & 
Schwartz,  2019). This is also consistent with the recorded obliquity between the observed and modeled 
(Figure 2a) displacement vectors during the 2014–2015 SSE (Mouslopoulou et al., 2020). Indeed, modeling 
suggests that this slip scenario (synchronous slow slip on the plate-interface and upper-plate faults) fits 
equally well the observations (Text S1 in Supporting Information S1). By contrast, the spatiotemporal res-
olution of the available geodetic data does not allow the detection of any clear migration of aseismic slip 
along the margin (e.g., in an approximately N-S orientation) (Figure 1b).
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2.3.  Changes in Seismicity Rates

Apparent changes in seismicity rates in the forearc are evident during the two transient episodes in north-
west Peloponnese and the epicentral area (Figure 1d). For this reason, here we investigate possibly statisti-
cally significant changes in the seismicity rates in response to the two SSEs after we updated and extended 
the relocated seismic catalog of Mouslopoulou et al. (2020). The revised catalog includes a total of 20,289 
events that occurred between January 1, 2014 and October 25, 2018 over latitude and longitude ranges of 
between 36°–38.2°N and 19°–23.5°E, respectively (Data Set S1; Text S2 in Supporting Information S1). Seis-
micity is primarily confined within the upper-plate (<20–25 km) and includes mostly events of magnitude 
ML < 3.5 (Figures S12 and S13 in Supporting Information S1). To identify potential changes in the rates of 
seismicity due to the recorded geodetic transients, we performed two standard statistical tests: the β- and 
Z-statistic (Marsan & Wyss, 2011). These tests quantify the changes in seismicity rates before and after a 
stressing event, that is, here the geodetic transient events. Specifically, the β-statistic quantifies changes 
in the seismicity rates by comparing the number of events before and after each stressing event while the 
final score is normalized only by the number of events preceding the stressing event (Matthews & Reasen-
berg, 1988). The Z-statistics (Habermann, 1981) is a more symmetric version of the β-statistic (Marsan & 
Wyss, 2011), as the final score is normalized by the number of events that precede and follow the stressing 

Figure 2.  The modeled distribution of the 2014–2015 (a) and 2018 (b) SSEs on the Hellenic plate-interface. Color-coded filled circles indicate microseismicity 
during the two SSEs while red stars denote the Mw 6.9 Zakynthos mainshock (north) and the two M > 5 events offshore SW Peloponnese (south) in 2018. (c 
and d) Measured (white arrows) and modeled (red arrows) horizontal and vertical GPS displacements corresponding to the models illustrated in (a and b), 
respectively. Error ellipses depict 1-sigma uncertainty.
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event—this test is particularly reliable when the total number of events is low. For the purpose of these 
statistical tests, we filtered out events with magnitudes <Mc = 2 and hypocentral depths >40 km. We have 
also declustered the initial catalog by removing all aftershocks associated with the two Mw > 5 earthquakes 
that occurred offshore SW of Peloponnese during the 2018 transient (Figure 3a and Figure S14; Text S3 in 
Supporting Information S1). The statistical tests were performed on the filtered catalog (6,601 events) and 
on an equally spaced grid with dimensions of 0.25° × 0.25° (Figure 3b).

Figure 3.  Changes in seismicity rates during the transient episodes. (a) Map-view of the relocated seismicity for the period January 1, 2014 to October 25, 
2018 (ML ≥ 2 and depth ≤ 40 km) (b) β- and Z- earthquake statistics associated with the SSEs. Regions with significant increases (red) and decreases (blue) in 
seismicity rates, before and after the onset of the geodetic transients, are highlighted. Cells with no significant change and with <10 events are highlighted gray 
and white, respectively.
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Our analysis shows that during the 2014–2015 transient, there is an increase in the rate of seismicity in 
northwest Peloponnese (Figure 3b). This change occurs at depths ranging from about 5 to 25 km (Figures 
S12–S14 in Supporting Information S1) and is here thought to be associated with slip on two steep strike-
slip faults onshore (dextral) and offshore (sinistral) NW Peloponnese as jointly suggested by analysis of 
moment tensors and seismic reflection profiles (Haddad et al., 2020; Mouslopoulou et al., 2020) (Figure 1a). 
No other significant changes are observed. The second geodetic transient, immediately preceding the main-
shock, is associated with a significant increase in the seismicity rates in the epicentral region of the Mw 6.9 
earthquake (Figure 3b; Figures S12 and S14 in Supporting Information S1). This analysis quantitatively 
confirms the results of Mouslopoulou et  al.  (2020) for increased upper-plate microseismicity associated 
with the transient deformational events.

2.4.  Mechanical Stability of the Western Hellenic Forearc

To evaluate the mechanical stability of the western Hellenic forearc we determined the effective strength 
of the forearc crust and the Hellenic megathrust using the dynamic Coulomb wedge theory (Wang & 
Hu, 2006). This theory simplifies the wedge-shaped forearc, in a cross-section normal to the plate margin 
(Figure 4a), as a material of elastic–perfectly Coulomb plastic rheology. Given the wedge geometry, the me-
chanical stability of the wedge is a function of the effective strength of the megathrust μ'b, and the effective 
strength of the wedge material μ'w = μ(1–λ), where μ is the coefficient of friction of the wedge material and 
λ is the pore fluid pressure ratio within the wedge. Depending on the values of μ'b and μ'w, the wedge can 
be in a mechanically stable state, at which it deforms only elastically, or in a critical state, at which it fails 
by faulting (Figure 4b). Higher values of μ'b increase the compression of the wedge and promote reverse 
faulting (compressively critical state in Figure 4b), while lower values of μ'b decrease the compression of 
the wedge and promote normal faulting (extensionally critical state). Accordingly, the occurrence of reverse 
and normal faulting events provides an upper and lower bound of both μ'b and μ'w values, respectively 
(Dielforder, 2017; Wang & Hu, 2006; Wang et al., 2019). We note that the conditions for strike-slip faulting 
are not directly determined by the Coulomb wedge analysis, as out-of-plane stresses are not considered, but 
fall within the limits constrained by the compressively and extensionally critical states.

We applied the dynamic Coulomb wedge model to the forearc east (inner wedge) and west (outer wedge) 
of the Zakynthos Island, respectively (Figure 4a). As illustrated in Figure 1a and Figure S1 in Supporting 
Information S1, both areas accommodate simultaneous reverse, strike-slip and normal faulting at average 
depths of ∼≤10 km (including also the years preceding the 2018 Zakynthos earthquake) (Mouslopoulou 
et al., 2020), indicating that the stress state in the Hellenic forearc varies between horizontal deviatoric com-
pression and tension. For the inner wedge, normal faulting requires a very weak megathrust with μ'b ≤ 0.01 
and near lithostatic pore fluid pressures with λ ≈ 0.95, which translates to an effective strength of the wedge 
of μ'w ≈ 0.02 (Figure 4b). For this strength of the wedge, reverse faulting takes place if the megathrust is 
slightly stronger (μ'b ≥ 0.02). By comparison, normal faulting in the outer wedge requires μ'b ≤ 0.04 and 
suggests an effective strength of the wedge μ'w ≈ 0.06 (Figure 4b). For this wedge strength, reverse faulting 
occurs if μ'b ≥ 0.05.

Overall, the dynamic Coulomb wedge analysis shows that the effective strength of the Hellenic megathrust 
is very low and becomes almost negligible underneath the inner wedge (Figure 4c). The average strength of 
μ'b ≈ 0.03 ± 0.03 is consistent with the strength of other subduction megathrust worldwide, which typically 
is about 0.03 (Gao & Wang, 2014; Lamb, 2006). Moreover, the reverse and normal faulting east and west of 
Zakynthos requires that the effective strength of the forearc crust to be as low as the one of the megathrust. 
At these conditions, small changes in megathrust friction suffice to change the mechanical state of the 
forearc from stable to compressively or extensionally critical. Therefore, our findings support a diverse style 
of faulting over small spatial scales in the western HSS arising from small spatial heterogeneities in the 
megathrust friction. This is in agreement with Mouslopoulou et al. (2020) where a mixture of strike-slip, 
normal, and reverse earthquakes were recorded prior (Figure 1a) and after the 2018 Zakynthos mainshock 
and also consistent with variable crustal stress field inferred from inversion of earthquake focal mecha-
nisms (Konstantinou et al., 2017).
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2.5.  Stress Perturbations in the Forearc Crust

Here, we explore whether the SSEs along the plate-interface promoted failure in the upper-plate prior to 
the Zakynthos mainshock (Mouslopoulou et al., 2020) and identify the sections of the crust that experi-
enced significant stress increases by calculating the Coulomb Failure Stress changes (ΔCFS) on specific 
upper-plate receiver faults (Figure 5). ΔCFS predicts changes in shear (τ) and normal (σ) stresses in the 
direction of movement on a receiver fault due to slip of an adjacent fault. Here, we include into the calcula-
tions the results of the strength estimates for upper-plate faults obtained in Section 2.4 and adopt a value of 
μ' = 0.05 for these faults (Figure 4c). Higher values were also tested and had minimal effect on the results 
(Figure S16 in Supporting Information S1).

We choose to estimate the stress changes that occurred due to the 2014–2015 SSE along two upper-plate 
faults (in offshore and onshore NW Peloponnese) which were seismically active during the preparatory 
phase (Figures 1a and 3) (Mouslopoulou et al., 2020). Using the dip/strike and slip direction presented for 
these faults in Mouslopoulou et al. (2020), we calculate the Coulomb stress changes at crustal depths of 
∼10 km (Figures 5a and 5b). Our calculations show that the recorded elevated seismic activity (Figure 3) 

Figure 4.  Fault strength and faulting conditions in the Hellenic forearc. (a) Schematic cross-section across the HSS along a 50-km-wide swath profile (inset 
map). Z, Zakynthos Island. The plate-interface comprises an upper frictional segment (green) and a lower viscous segment (red). The frictional-to-viscous 
transition (FVT) along the megathrust is at 30–40 km depth. (b) Coulomb wedge models for the inner (mostly subaerial) and outer (submarine) wedge. 
RF: reverse faulting, NF: normal faulting. Red ellipse illustrates approximate solutions that are consistent with the upper-plate faulting pattern. (c) Sketch 
summarizing the preferred Coulomb wedge solutions for the effective strength of the megathrust (μ’b) and the effective strength of the wedge (μ’w).
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lies in areas of increased ΔCFS (Figure 5b) or where ΔCFS transition from negative to positive values (Fig-
ure 5a). The modeled stress perturbations due to the 2014–2015 SSE reach values up to ∼3 kPa at depths of 
∼10 km.

Following the same procedure, we predict the ΔCFS due to the 2018 SSE (Figures 5c and 5d). Here, the 
receiver fault is tailored to the characteristics of the moment tensor of the 2018 Zakynthos mainshock 
(strike:005°, dip:52°, and rake:165°) (Mouslopoulou et al., 2020). In this case, we explore the ΔCFS at two 
indicative crustal depth profiles, that of 14 and 15 km, to account for uncertainties in the estimation of the 
earthquake's hypocenter (14 ± 4 km depth) (Mouslopoulou et al., 2020) and in the plate-interface geometry 

Figure 5.  Coulomb failure stress changes (ΔCFS) due to SSEs. ΔCFS in the upper crust (10–15 km) for receiver faults due to slow slip on the plate-interface. 
The notional strike of each fault is indicated by the patterns of short gray lines whereas the dip/rake is annotated on each map (fault attributes from 
Mouslopoulou et al. [2020]). (a and b) ΔCFS at 10 km depth tailored to (a) a NW-SE sinistral and (b) a NE-SW dextral strike-slip fault and their associated 
moment tensors. (c and d) ΔCFS at depths of (c) 14 km and (d) 15 km tailored to the focal mechanism of the 2018 Zakynthos Earthquake. Open circles indicate 
aftershocks during the first 5 days of the Zakynthos mainshock. Main active faults are also shown. Epicenter of the Zakynthos Earthquake is denoted in (a and 
b) by gray star.
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(Halpaap et al., 2018, 2019). Results, summarized in Figures 5c and 5d, indicate that the 2018 Mw 6.9 Zakyn-
thos Earthquake, together with its early aftershock sequence (≤5 days), is clearly located within a region of 
the crust that has experienced stress increases up to 25 kPa. The distribution of the ΔCFS is in very good 
agreement with the observed changes (increases and decreases) in the seismicity rates proximal to the epi-
central area (Figures 3b, 5c, and 5d).

Hence, ΔCFS modeling suggests that stress changes as small as ∼3 kPa may be capable (Cochran et al., 2004; 
Harris, 1998; King et al., 1994; Reasenberg & Simpson, 1992) of destabilizing the overriding plate over mul-
tiple fault orientations. It also suggests that weak aseismic slip (≤10 mm) on the plate-interface may produce 
significant (up to 25 kPa) stress perturbations capable of triggering large-magnitude (M > 6) earthquakes in 
the upper-plate, such as the one recorded in Zakynthos immediately after the 2018 transient.

3.  Discussion
On October 25, 2018, a Mw 6.9 earthquake ruptured the western end of the HSS, south of Zakynthos Island 
(Figure 1a) (Chousianitis & Konca, 2019; Haddad et al., 2020; Mouslopoulou et al., 2020; Sokos et al., 2020) 
and across a region where the African-Eurasian plate-motion transitions from convergence to transform 
through distributed faulting (Figure  1a) (Konstantinou et  al.,  2017; Pérouse et  al.,  2012). The two SSEs 
which were reported to precede the 2018 Zakynthos Earthquake (Mouslopoulou et  al.,  2020) appear to 
have played a key role in initiating a tectonic unrest (2014–2015 SSE) beneath western Peloponnese and, 
eventually, triggering (2018 SSE) the Mw 6.9 Zakynthos Earthquake. Geodetic modeling shows that the 
two SSEs have similar slip distributions (Figure 2). The earlier SSE occurred mainly beneath western Pe-
loponnese and east of the Island of Zakynthos, where there was also an increase in seismicity rates in the 
forearc (Figure 3b). The 2018 SSE, on the other hand, occurred at slightly shallower depths (beneath the 
Island of Zakynthos) and was associated with an increase in the seismicity rates in the future epicentral area 
(Figure 3b). Interestingly, ΔCFS modeling indicates that the Zakynthos Earthquake occurred in an area of 
positive ΔCFS while the inner wedge east of Zakynthos accommodated largely negative ΔCFS; these stress 
perturbations are in good agreement with the fluctuations observed in the seismicity rates (Figures 3 and 5). 
The westward (updip on the plate-interface) migration of the loci of slow-slip and of the associated micro-
seismicity in the upper-plate, together with the stress perturbations detected through the ΔCFS modeling, 
collectively suggest the triggering of the October 25, 2018 Mw 6.9 event.

The triggering scenario is also supported by our dynamic Coulomb wedge analysis that highlights a me-
chanically fragile forearc that fails in response to small changes of the megathrust strength. This sensitivity 
of forearcs to small stress changes has been previously documented mainly within the context of large 
megathrust earthquakes, such as the 2010 Mw 8.8 Maule earthquake and the 2011 Mw 9 Tohoku-Oki earth-
quake, where large parts of the forearc became extensionally critical due to small static stress drops of a 
few MPa (e.g., Dielforder, 2017; Wang et al., 2019). SSEs are likely to alter the strength of the megathrust 
for the following reasons: (a) slow slip is thought to occur along weak segments of the megathrust that are 
characterized by near-lithostatic pore fluid pressures (Behr & Bürgmann, 2021) and (b) it has been exper-
imentally shown that shear dilatancy during SSE can reduce the pore fluid pressure in the fault zone by a 
few tens of MPa, which would temporarily increase the megathrust strength (Samuelson et al., 2009). For 
example, a decrease in basal pore fluid pressures of ≤10 MPa would suffice to “push” the forearc from an 
extensionally critical state to a compressively critical state. Notably, the outer wedge west of Zakynthos 
Island experienced mainly normal faulting in the years before the Zakynthos earthquake (Mouslopoulou 
et al., 2020), suggesting that it was in an extensionally critical state, while the Zakynthos Earthquake and its 
aftershock sequence (Mouslopoulou et al., 2020) records transpression, indicating that the wedge became 
compressively critical just before the earthquake. However, the potential changes in megathrust friction due 
to the SSE remain difficult to constrain, because the actual physical processes that occur at depth along the 
plate-interface remain only partly understood (Behr & Bürgmann, 2021; Bürgmann, 2018).

The down-dip extent of the two SSEs modeled here (Figure 2) are expected to straddle the frictional-viscous 
transition along the plate-interface which is commonly controlled by the thermal conditions of the subduct-
ing slab and occurs at temperatures of ∼350–500°C (Gao & Wang, 2017) and depths of 20–50 km (Dragert 
et al., 2001; Hirose et al., 1999; Schwartz & Rokosky, 2007; Wallace & Beavan, 2006). In Greece, however, 
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where the subducting slab of the HSS is very old (220–230 Ma) and cold, the isotherms of 350–500°C are 
located much deeper, at ∼60–80 km depth (Halpaap et al., 2019; Speranza et al., 2012). We therefore pro-
pose that the down-dip extent of the SSEs is likely controlled here by the depth of the continental Aegean 
Moho, which lies at about 35–40 km beneath central Peloponnese (Gao & Wang, 2017; Halpaap et al., 2019). 
Further evidence from seismic tomography shows increased pore-fluid pressures beneath central Pelopon-
nese due to fluids escaping from deep sections of the slab (>80 km) into the mantle wedge and shallow-
er depths (<40 km) (Halpaap et al., 2018, 2019). High pore-fluid pressure on the plate-interface near the 
mantle wedge favors the occurrence of SSEs and deep tectonic tremor (Audet & Bürgmann, 2014; Gao & 
Wang, 2017). The latter, however, has not yet been detected along the HSS (Bocchini et al., 2021), perhaps 
because long-lived SSEs occurring near the down-dip limit of the seismogenic zone, as those detected be-
neath western Peloponnese, are not strongly correlated with tremor episodes (Obara & Kato, 2016).

In summary, we find that, although plate-motion along the Hellenic subduction occurs mostly (>80%) 
aseismically (Reilinger et al.,  2010), long-term (i.e., several months) slow slip may characterize sections 
of the plate-interface zone where isolated patches remain strongly locked (Saltogianni et al., 2020). In cir-
cumstances where such slow-slip occurs within a mechanically fragile forearc, tectonic unrest with as-
sociated large-magnitude earthquakes, may be triggered. These findings may have implications for other 
weakly locked subduction systems worldwide, such as those encountered in central/northern Hikurangi 
in New Zealand, central Japan, Costa Rica, Ecuador, etc. (Davis et al., 2015; Ozawa et al., 2007; Shaddox & 
Schwartz, 2019; Vallée et al., 2013; Wallace & Beavan, 2010).

Data Availability Statement
The geodetic data used for the slow slip modeling are from Mouslopoulou et al.  (2020). The earthquake 
catalog is included in Supporting Information S1 of this article (Data Set S1). For earthquake relocation, 
we used picks from the following seismic networks: HL (National Observatory of Athens) (NOA, 1997), HT 
(Aristotle University of Thessaloniki) (AUTH, 1981), HP (University of Patras) (UP, 2000), and HA (Univer-
sity of Athens) (UA, 2008). In Figure 1a, 11 focal mechanisms derived from the repository of the National 
Observatory of Athens (http://bbnet.gein.noa.gr/HL/seismicity/mts/revised-moment-tensors) and the off-
shore bathymetry from EMODnet (https://portal.emodnet-bathymetry.eu/?menu=19). Maps in figures in 
the main text and the Supporting Information S1 were produced using the Generic Mapping Tools (GMT) 
software available at https://www.generic-mapping-tools.org/ (last accessed July 2021).
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