9,724 research outputs found

    Gaseous exhaust emissions from a JT8D-109 turbofan engine at simulated cruise flight conditions

    Get PDF
    Gaseous emissions from a JT8D-109 turbofan engine were measured in an altitude facility at four simulated cruise flight conditions: Mach 0.8 at altitudes of 9.1, 10, 7, and 12.2 km and Mach 0.9 at 10.7 km. Engine inlet air temperature was held constant at 283 K for all tests. Emissions measurements were made at nominally 6 cm intervals across the horizontal diameter of the engine exhaust nozzle with a single-point traversing gas sample probe. Measured emissions of decreased with increasing altitude from an emission index of 10.4 to one of 8.3, while carbon monoxide increased with increasing altitude from an emission index of 1.6 to one of 4.4. Unburned hydrocarbon emissions were essentially negligible for all flight conditions. Since the engine inlet air temperatures were not correctly simulated, the NOx emission indices were corrected to true altitude conditions by using correlating parameters for changes in combustor inlet temperature, pressure, and temperature rise. The correction was small at the lowest altitude. At the 10.7 and 12.2 km, Mach 0.8 test conditions the correction decreased the measured values by 1 emission index

    Measurement of gaseous emissions from a turbofan engine at simulated altitude conditions

    Get PDF
    Gaseous emission from a TFE 731-2 turbofan engine were measured over a range of fuel-air ratios from idle to full power at simulated from near sea level to 13,200 m. Carbon monoxide and unburned hydrocarbon emissions were highest at idle and lowest at high power settings; oxides of nitrogen exhibited the reverse trend. Carbon monoxide and unburned hydrocarbon levels decreased with increasing altitude. Oxides of nitrogen emissions were successfully correlated by a parametric group of combustor operating variables

    Swirl-can combustor performance to near-stoichiometric fuel-air ratio

    Get PDF
    Emissions and performance characteristics were determined for full-annulus swirl-can modular combustors operated to near stoichiometric fuel air ratios. The purposes of the tests were to obtain stoichiometric data at inlet air temperatures up to 894 K and to determine the effect of module number by investigating 120 and 72 module swirl-can combustors. The maximum average exit temperature obtained with the 120-module swirl-can combustor was 2465 K with a combustion efficiency of 95 percent at an inlet-air temperature of 894 K. The 72-module swirl-can combustor reached a maximum average exit temperature of 2306 K with a combustion efficiency of 92 percent at an inlet air temperature of 894 K. At a constant inlet air temperature, maximum oxides of nitrogen emission index values occurred at a fuel-air ratio of 0.037 for the 72-module design and 0.044 for the 120-module design. The combustor average exit temperature and combustion efficiency were calculated from emissions measurements. The measured emissions included carbon monoxide, unburned hydrocarbons, oxides of nitrogen, and smoke

    Charge Density of the Neutron

    Full text link
    A model-independent analysis of the infinite-momentum-frame charge density of partons in the transverse plane is presented for the nucleon. We find that the neutron parton charge density is negative at the center, so that the square of the transverse charge radius is positive, in contrast with many expectations. Additionally, the proton's central u quark charge density is larger than that of the d quark by about 70 %. The proton (neutron) charge density has a long range positively (negatively) charged component.Comment: 7 pages, three figures The replacement mainly concerns correcting an error made in computing the proton up and down quark densities from the correctly computed proton and neutron charge densities. The proton central u quark density is now larger than that of the d quar

    Boundary critical behaviour at mm-axial Lifshitz points: the special transition for the case of a surface plane parallel to the modulation axes

    Full text link
    The critical behaviour of dd-dimensional semi-infinite systems with nn-component order parameter ϕ\bm{\phi} is studied at an mm-axial bulk Lifshitz point whose wave-vector instability is isotropic in an mm-dimensional subspace of Rd\mathbb{R}^d. Field-theoretic renormalization group methods are utilised to examine the special surface transition in the case where the mm potential modulation axes, with 0md10\leq m\leq d-1, are parallel to the surface. The resulting scaling laws for the surface critical indices are given. The surface critical exponent ηsp\eta_\|^{\rm sp}, the surface crossover exponent Φ\Phi and related ones are determined to first order in \epsilon=4+\case{m}{2}-d. Unlike the bulk critical exponents and the surface critical exponents of the ordinary transition, Φ\Phi is mm-dependent already at first order in ϵ\epsilon. The \Or(\epsilon) term of ηsp\eta_\|^{\rm sp} is found to vanish, which implies that the difference of β1sp\beta_1^{\rm sp} and the bulk exponent β\beta is of order ϵ2\epsilon^2.Comment: 21 pages, one figure included as eps file, uses IOP style file

    Stratospheric cruise emission reduction program

    Get PDF
    A recently implemented NASA effort specifically aimed at reducing cruise oxides of nitrogen from high-altitude aircraft is discussed. The desired emission levels and the combustor technology required to achieve them are discussed. A brief overview of the SCERP operating plan is given. Lean premixed-prevaporized combustion and some of the potential difficulties that are associated with applying this technique to gas turbine combustors are examined. Base technology was developed in several key areas. These fundamental studies are viewed as a requirement for successful implementation of the lean premixed combustion technique

    The Off-forward Quark-Quark Correlation Function

    Get PDF
    The properties of the non-forward quark-quark correlation function are examined. We derive constraints on the correlation function from the transformation properties of the fundamental fields of QCD occurring in its definition. We further develop a method to construct an ansatz for this correlator. We present the complete leading order set of generalized parton distributions in terms of the amplitudes of the ansatz. Finally we conclude that the number of independent generalized parton helicity changing distributions is four.Comment: Accepted for publication in Physical Review

    Time-dependence of correlation functions following a quantum quench

    Full text link
    We show that the time-dependence of correlation functions in an extended quantum system in d dimensions, which is prepared in the ground state of some hamiltonian and then evolves without dissipation according to some other hamiltonian, may be extracted using methods of boundary critical phenomena in d+1 dimensions. For d=1 particularly powerful results are available using conformal field theory. These are checked against those available from solvable models. They may be explained in terms of a picture, valid more generally, whereby quasiparticles, entangled over regions of the order of the correlation length in the initial state, then propagate classically through the system.Comment: 4+ pages, Corrected Typo

    Critical behaviour near multiple junctions and dirty surfaces in the two-dimensional Ising model

    Full text link
    We consider m two-dimensional semi-infinite planes of Ising spins joined together through surface spins and study the critical behaviour near to the junction. The m=0 limit of the model - according to the replica trick - corresponds to the semi-infinite Ising model in the presence of a random surface field (RSFI). Using conformal mapping, second-order perturbation expansion around the weakly- and strongly-coupled planes limits and differential renormalization group, we show that the surface critical behaviour of the RSFI model is described by Ising critical exponents with logarithmic corrections to scaling, while at multiple junctions (m>2) the transition is first order. There is a spontaneous junction magnetization at the bulk critical point.Comment: Old paper, for archiving. 6 pages, 1 figure, IOP macro, eps
    corecore