32 research outputs found

    Tunable mechanical properties of gellan gum/poly (ethylene glycol) diacrylate hydrogels for articular cartilage engineering

    Get PDF
    Articular cartilage (AC) is a complex multi-layered structure organized into four zones, namely superficial, middle, deep and calcified layers [1]. Its mechanical properties are varying with depth, and the compression modulus of the superficial and middle zone can achieve the value of 0.28 卤 0.16 MPa and 0.73 卤 0.26 MPa, respectively [2]. This paper reports the preliminary results concerning mechanically tunable gellan gum/poly (ethylene glycol) diacrylate hydrogels for mimicking the compression mechanical properties of the first two layers of the AC tissue

    El proceso administrativo: Una aproximaci贸n conceptual

    Get PDF
    La administraci贸n se define como la ciencia que estudia la planificaci贸n, organizaci贸n, direcci贸n y control de los recursos humanos, financieros, econ贸micos y tecnol贸gicos con el prop贸sito de obtener la mayor productividad posible y beneficiar al mayor n煤mero de personas. Otra definici贸n de administraci贸n ser铆a la de lograr un objetivo mediante los esfuerzos de otras personas1. El presente escrito se centra en cada una de las funciones de la administraci贸n (planeaci贸n, organizaci贸n, direcci贸n y control), que en su conjunto conforman el proceso administrativo

    Wear behavior characterization of hydrogels constructs for cartilage tissue replacement

    Get PDF
    This paper aims to characterize the wear behavior of hydrogel constructs designed for human articular cartilage replacement. To this purpose, poly (ethylene glycol) diacrylate (PEGDA) 10% w/v and gellan gum (GG) 1.5% w/v were used to reproduce the superior (SUP) cartilage layer and PEGDA 15% w/v and GG 1.5% w/v were used to reproduce the deep (DEEP) cartilage layer, with or without graphene oxide (GO). These materials (SUP and DEEP) were analyzed alone and in combination to mimic the zonal architecture of human articular cartilage. The developed constructs were tested using a four-station displacement control knee joint simulator under bovine calf serum. Roughness and micro-computer tomography (碌-CT) measurements evidenced that the hydrogels with 10% w/v of PEGDA showed a worse behavior both in terms of roughness increase and loss of uniformly distributed density than 15% w/v of PEGDA. The simultaneous presence of GO and 15% w/v PEGDA contributed to keeping the hydrogel construct鈥檚 characteristics. The Raman spectra of the control samples showed the presence of unreacted C=C bonds in all the hydrogels. The degree of crosslinking increased along the series SUP < DEEP + SUP < DEEP without GO. The Raman spectra of the tested hydrogels showed the loss of diacrylate groups in all the samples, due to the washout of unreacted PEGDA in bovine calf serum aqueous environment. The loss decreased along the series SUP > DEEP + SUP > DEEP, further confirming that the degree of photo-crosslinking of the starting materials plays a key role in determining their wear behavior. 碌-CT and Raman spectroscopy proved to be suitable techniques to characterize the structure and composition of hydrogels

    Primers for the Adhesion of Gellan Gum-Based Hydrogels to the Cartilage: A Comparative Study

    Get PDF
    A stable adhesion to the cartilage is a crucial requisite for hydrogels used for cartilage regeneration. Indeed, a weak interface between the tissue and the implanted material may produce a premature detachment and thus the failure of the regeneration processes. Fibrin glue, cellulose nanofibers and catecholamines have been proposed in the state-of-the-art as primers to improve the adhesion. However, no studies focused on a systematic comparison of their performance. This work aims to evaluate the adhesion strength between ex vivo cartilage specimens and polysaccharide hydrogels (gellan gum and methacrylated gellan gum), by applying the mentioned primers as intermediate layer. Results show that the fibrin glue and the cellulose nanofibers improve the adhesion strength, while catecholamines do not guarantee reaching a clinically acceptable value. Stem cells embedded in gellan gum hydrogels reduce the adhesion strength when fibrin glue is used as a primer, being anyhow still sufficient for in vivo applications

    RGD-Functionalized Hydrogel Supports the Chondrogenic Commitment of Adipose Mesenchymal Stromal Cells

    Get PDF
    Articular cartilage is known to have limited intrinsic self-healing capacity when a defect or a degeneration process occurs. Hydrogels represent promising biomaterials for cell encapsulation and injection in cartilage defects by creating an environment that mimics the cartilage extracellular matrix. The aim of this study is the analysis of two different concentrations (1:1 and 1:2) of VitroGel(庐) (VG) hydrogels without (VG-3D) and with arginine-glycine-aspartic acid (RGD) motifs, (VG-RGD), verifying their ability to support chondrogenic differentiation of encapsulated human adipose mesenchymal stromal cells (hASCs). We analyzed the hydrogel properties in terms of rheometric measurements, cell viability, cytotoxicity, and the expression of chondrogenic markers using gene expression, histology, and immunohistochemical tests. We highlighted a shear-thinning behavior of both hydrogels, which showed good injectability. We demonstrated a good morphology and high viability of hASCs in both hydrogels. VG-RGD 1:2 hydrogels were the most effective, both at the gene and protein levels, to support the expression of the typical chondrogenic markers, including collagen type 2, SOX9, aggrecan, glycosaminoglycan, and cartilage oligomeric matrix protein and to decrease the proliferation marker MKI67 and the fibrotic marker collagen type 1. This study demonstrated that both hydrogels, at different concentrations, and the presence of RGD motifs, significantly contributed to the chondrogenic commitment of the laden hASCs

    Graphene Oxide鈥怐oped Gellan Gum鈥揚EGDA Bilayered Hydrogel Mimicking the Mechanical and Lubrication Properties of Articular Cartilage

    Get PDF
    Articular cartilage (AC) is a specialized connective tissue able to provide a low-friction gliding surface supporting shock-absorption, reducing stresses, and guaranteeing wear-resistance thanks to its structure and mechanical and lubrication properties. Being an avascular tissue, AC has a limited ability to heal defects. Nowadays, conventional strategies show several limitations, which results in ineffective restoration of chondral defects. Several tissue engineering approaches have been proposed to restore the AC's native properties without reproducing its mechanical and lubrication properties yet. This work reports the fabrication of a bilayered structure made of gellan gum (GG) and poly (ethylene glycol) diacrylate (PEGDA), able to mimic the mechanical and lubrication features of both AC superficial and deep zones. Through appropriate combinations of GG and PEGDA, cartilage Young's modulus is effectively mimicked for both zones. Graphene oxide is used as a dopant agent for the superficial hydrogel layer, demonstrating a lower friction than the nondoped counterpart. The bilayered hydrogel's antiwear properties are confirmed by using a knee simulator, following ISO 14243. Finally, in vitro tests with human chondrocytes confirm the absence of cytotoxicity effects. The results shown in this paper open the way to a multilayered synthetic injectable or surgically implantable filler for restoring AC defects
    corecore