10 research outputs found

    Crilin: CRystal calorImeter with Longitudinal InformatioN for a future Muon Collider

    Get PDF
    Being modern tracking systems very precise, jet performance in particle flow-like reconstruction algorithms is usually limited by the calorimeter performance. In particular, a high granularity is required in order to distinguish signal particles from background and to solve the substructures necessary for jet identification. Time of arrival measurements in the calorimeter could play an important role in HL-LHC, since a high number of pile-up collisions is expected, and the timing could be used to assign clusters to the corresponding interaction vertex. In a Muon Collider, the timing could be used to remove signals produced by beam-induced background, asynchronous with respect to the bunch crossing. The calorimeter energy resolution is also fundamental to measure the kinematic properties of jets: a finely segmented calorimeter design should be favored in order to solve the jet substructure. However, this contrasts with the requirement for high timing resolution even for signal events involving low energy deposits, such as in the case of high impulse muons. Our proposed design, the Crilin calorimeter, is a semi-homogeneous calorimeter based on Lead Fluoride (PbF2 ) Crystals readout by surface-mount UV-extended Silicon Photomultipliers (SiPMs). In this paper, the development of a small prototype consisting of 2 layers of 3 Ă— 3 crystals each is reported along with the relative results

    Performances of an Active Target GEM-Based TPC for the AMADEUS Experiment

    Get PDF
    In this paper, we present the R & D activity on a new GEM-based Time Projection Chamber (GEM-TPC) detector for the inner region of the AMADEUS experiment, which is aiming to perform measurements of low-energy negative kaon interactions in nuclei at the DAΦNE e+ e- collider at LNF-INFN. A novel idea of using a GEM-TPC as a low mass target and detector at the same time comes motivated by the need of studying the low energy interactions of K- with nuclei in a complete way, tracking and identifying all of the produced particles. Even more, what makes the experimental proposal revolutionary is the possibility of using different gaseous targets without any other substantial intervention on the experimental setup, making it a flexible multipurpose device. This new detection technique applied to the nuclear physics requires the use of low-radiation length materials and very pure light gases such as Hydrogen, Deuterium, Helium-3, Helium-4, etc. In order to evaluate the GEM-TPC performances, a 10 × 10 cm2 prototype with a drift gap of 15 cm has been realized. The detector was tested at the πM1 beam facility of the Paul Scherrer Institut (PSI) with low momentum pions and protons. Detection efficiency and spatial resolution, as a function of gas mixture, gas gain and ionazing particle, are reported and discussed

    Purification of large volume of liquid argon for LEGEND-200

    Get PDF
    The design, construction and performance of the system capable of purifying 65m3^{3} of liquid argon to sub-ppm level designed for LEGEND–200 experiment is presented. The quality of the purified liquid argon is monitored in real-time during the purification process, by measuring the argon triplet state lifetime and simultaneous direct measurements of the concentrations of impurities such as water, oxygen, and nitrogen with a sensitivity of 0.1 ppm. The achieved argon triplet lifetime value measured inside the LEGEND cryostat, when filled in 70% of its capacity, was at the level of τ3\tau_{3} = 1.3 μs. If needed, the system may also be used later to purify liquid argon already filled into the LEGEND cryostat in the loop mode

    Crilin: A Semi-Homogeneous Calorimeter for a Future Muon Collider

    Get PDF
    Calorimeters, as other detectors, have to face the increasing performance demands of the new energy frontier experiments. For a future Muon Collider the main challenge is given by the Beam Induced Background that may pose limitations to the physics performance. However, it is possible to reduce the BIB impact by exploiting some of its characteristics by ensuring high granularity, excellent timing, longitudinal segmentation and good energy resolution. The proposed design, the Crilin calorimeter, is an alternative semi-homogeneous ECAL barrel for the Muon Collider based on Lead Fluoride Crystals (PbF2) with a surface-mount UV-extended Silicon Photomultipliers (SiPMs) readout with an optimized design for a future Muon Collider

    A novel High-Voltage System for a triple GEM detector

    No full text
    A novel High-Voltage System for a triple GEM detector has been designed and realized in Frascati within the LHCb muon detector framework. The system is built with seven floating power supply, with a maximum of 1200 V each, and controlled via CANbus, for voltage settings and monitoring. Several HV modules can be installed in a nano-ammeter mainframe already developed in Frascati, realizing a HV crate able to supply up to 24 triple GEM chambers with a 1 nA resolution monitoring system

    Applications in beam diagnostics with triple GEM detectors

    No full text
    The development of different detectors based on GEM technology, mainly to be used for beam diagnostic, is described. The use of GEM foils for detector construction started in Frascati on 2002 with the R&D for LHCb Muon Chambers placed at small angle. Ever since several triple GEM chambers have been built for different applications. The results obtained in several beam tests have shown high performances: high rate capability (50 MHz/cm^2), good time resolution (4 ns), good space resolution O(200 um) source, and good aging resistance after 2C/cm^2 source of integrated charge. Recent developments on readout electronics and power supply for portable detectors are presented

    Characterization of GEMINI, a 16-channels programmable readout interface for Triple-GEM detectors in 180nm CMOS

    No full text
    The recent advances in GEM detector development has led to the requirement of a custom readout to fully exploit the advantages of this technology. GEM detectors can be realized with various shapes, also irregular, and high number of channels. GEMINI has been specifically designed to work with Triple-GEM detectors and it integrates 16 channels to perform readout with both analog and digital signal with Time over Threshold. GEMINI also allows to set a different threshold for every channel to compensate channel inhomogeneity. This work compares simulations with lab measurements and presents results of the imaging of an X-ray source performed with GEMINI

    Purification of large volume of liquid argon for LEGEND-200

    Get PDF
    The design, construction and performance of the system capable of purifying 65m3^{3} of liquid argon to sub-ppm level designed for LEGEND–200 experiment is presented. The quality of the purified liquid argon is monitored in real-time during the purification process, by measuring the argon triplet state lifetime and simultaneous direct measurements of the concentrations of impurities such as water, oxygen, and nitrogen with a sensitivity of 0.1 ppm. The achieved argon triplet lifetime value measured inside the LEGEND cryostat, when filled in 70% of its capacity, was at the level of τ3\tau_{3} = 1.3 μs. If needed, the system may also be used later to purify liquid argon already filled into the LEGEND cryostat in the loop mode

    NA62 Technical Design

    No full text
    NA62 technical design repor

    The beam and detector of the NA62 experiment at CERN

    No full text
    NA62 is a fixed-target experiment at the CERN SPS dedicated to measurements of rare kaon decays. Such measurements, like the branching fraction of the K(+) → π(+) ν bar nu decay, have the potential to bring significant insights into new physics processes when comparison is made with precise theoretical predictions. For this purpose, innovative techniques have been developed, in particular, in the domain of low-mass tracking devices. Detector construction spanned several years from 2009 to 2014. The collaboration started detector commissioning in 2014 and will collect data until the end of 2018. The beam line and detector components are described together with their early performance obtained from 2014 and 2015 data.NA62 is a fixed-target experiment at the CERN SPS dedicated to measurements of rare kaon decays. Such measurements, like the branching fraction of the K+→π+ννˉK^{+} \rightarrow \pi^{+} \nu \bar\nu decay, have the potential to bring significant insights into new physics processes when comparison is made with precise theoretical predictions. For this purpose, innovative techniques have been developed, in particular, in the domain of low-mass tracking devices. Detector construction spanned several years from 2009 to 2014. The collaboration started detector commissioning in 2014 and will collect data until the end of 2018. The beam line and detector components are described together with their early performance obtained from 2014 and 2015 data
    corecore