68 research outputs found
Land use affects the soil C sequestration in alpine environment, NE Italy
Soil carbon sequestration is strongly affected by soil properties, climate, and anthropogenic activities. Assessing these drivers is key to understanding the effect of land use on soil organic matter stabilization. We evaluated land use and soil depth influencing patterns of soil organic matter stabilization in three types of soil profiles located under the same pedogenetic matrix and alpine conditions but with different vegetation cover. The stock in soil organic carbon in the mean 0–20 cm layer increased from prairie (31.9 t ha−1) to prairie in natural reforestation (42 t ha−1) to forest (120 t ha−1), corresponding to increments of 1.3-fold prairie, for prairie in natural reforestation, and of 3.8-fold prairie for forest. The forest showed the highest humic carbon (21.7 g kg−1), which was 2.8 times greater than the prairie in natural reforestation and 4 times higher than the prairie. 13C-NMR spectroscopic measurements suggested a different C pattern. The prairie in natural reforestation and the prairie were characterized by a higher content in O,N-alkyl C with respect to the forest. Alkyl C and aromatic C in the prairie in natural reforestation and prairie did not show relevant differences while they decreased with respect to the forest. Carboxyl and phenolic C groups were markedly higher in forest and prairie than prairie in natural reforestation. Alkyl C, carboxyl C, and phenolic C prevailed in the Ah horizons whereas aromatic C and O,N-alkyl C were dominant in the B horizons. Overall, the marked distribution of O,N-alkyl C and alkyl C in humic substances (HS) indicates a low degree of humification. Nevertheless, in forest, the relatively high presence of aromatic C designated HS endowed with a relatively high humification degree. Thus, our results might suggest that in the alpine environment of NE Italy differences in soil organic matter (SOM) stocks and characteristics are affected by land use and anthropic activities
Land use affects the soil C sequestration in alpine environment, NE Italy
Soil carbon sequestration is strongly affected by soil properties, climate, and anthropogenic
activities. Assessing these drivers is key to understanding the effect of land use on soil organic
matter stabilization. We evaluated land use and soil depth influencing patterns of soil organic matter stabilization in three types of soil profiles located under the same pedogenetic matrix and alpine conditions but with different vegetation cover. The stock in soil organic carbon in the mean 0\u201320 cm layer increased from prairie (31.9 t ha1) to prairie in natural reforestation (42 t ha1) to forest (120 t ha1), corresponding to increments of 1.3-fold prairie, for prairie in natural reforestation, and of 3.8-fold prairie for forest. The forest showed the highest humic carbon (21.7 g kg1), which was 2.8 times greater than the prairie in natural reforestation and 4 times higher than the prairie. 13C-NMR spectroscopic measurements suggested a different C pattern. The prairie in natural reforestation and the prairie were characterized by a higher content in O,N-alkyl C with respect to the forest. Alkyl C and aromatic C in the prairie in natural reforestation and prairie did not show relevant differences while they decreased with respect to the forest. Carboxyl and phenolic C groups were markedly higher in forest and prairie than prairie in natural reforestation. Alkyl C, carboxyl C, and phenolic C prevailed in the Ah horizons whereas aromatic C and O,N-alkyl C were dominant in the B horizons.
Overall, the marked distribution of O,N-alkyl C and alkyl C in humic substances (HS) indicates a low degree of humification. Nevertheless, in forest, the relatively high presence of aromatic C designated HS endowed with a relatively high humification degree. Thus, our results might suggest that in the alpine environment of NE Italy differences in soil organic matter (SOM) stocks and characteristics are affected by land use and anthropic activities
Effects of moderate and high rates of biochar and compost on grapevine growth in a greenhouse experiment
Biochar is used as soil amendment and enhancer of plant growth, but the mechanisms involved in grapevine are not understood. In this study, the short-term effects of amendments were evaluated in a trial combining three substrates (biochar, compost, peat-based media) with three doses(30, 70, 100%) along a time sequence on 1-year-old bare root cuttings of grapevine. Amendments were analyzed for elemental composition. Soil pH, electrical conductivity (EC), chlorophyll (CHL), flavonoids (FL), anthocyans (ANT) and nitrogen balance index (NBI) were measured.Biochar differed from other amendments for stable C structures, where nutrients and lignin residues were high in compost. Biochar increased soil pH, whereas biochar plus compost mixture augmented EC. The amended plants had detrimental effects on root, true and lateral leaves. Nevertheless, at the lowest rate biochar increased the primary shoot and total scion to root biomass ratio. Among biochemicals, ANT and NBI were mostly affected by biochar, while compost gave only slight increments. Thus, although biochar rate was not adequate for the shedding in open field our results suggest that biochar might be useful in nursery when used at low dosages
Evaluation of seaweed extracts from laminaria and ascophyllum nodosum spp. As biostimulants in zea mays L. using a combination of chemical, biochemical and morphological approaches
Seaweed extracts can be employed as biostimulants during crop cultivation owing to their positive effects on plant performance. Therefore, in this study one extract from Laminaria (A) and five extracts from Ascophyllum nodosum (B–F) were assayed on maize (Zea mays L.) plants supplied for 2 days with 0.5 mL L−1 of single products to evaluate their capacity to stimulate root growth and morphology, nutrition, and sugars accumulation. Firstly, extracts were chemically characterized via Fourier transform infrared (FT-IR) and FT-Raman spectroscopies, and their content in carbon, nitrogen, phenolic acids and hormones (indole-3-acetic acid, IAA, and Isopentenyladenosine, IPA) was quantified. The auxin like- and gibberellic acid -like activities of all extracts were also determined. FT-IR and FT-Raman spectra provided complementary information depicting distinct spectral pattern for each extract. Bands assigned to alginic and uronic acids were dominant in FT-IR spectra, while those corresponding to polyaromatic rings were evident in FT-Raman spectra. In general, extracts stimulated root growth, nutrition, esterase activity, and sugar content. However, they showed high variation in chemical features, which may explain their different capacity in triggering physiological responses in maize. Among A. nodosum extracts for instance, E was the most efficient in promoting root morphology traits, likely because of its elevate content in IAA (32.43 nM), while F extract was the highest in phenol content (1,933 mg L−1) and the most successful in improving plant nutrition. On the other hand, C extract was very effective in stimulating root elongation, but did not influence plant nutrition. B and D extracts induced similar positive effects on plants, although they greatly varied in chemical composition. Laminaria extract (A) differed from A. nodosum extracts, because of its low content in total phenols and the presence of both IAA- and GA-like activity. We conclude that all seaweed extracts acted as biostimulants in maize, but their chemical properties appeared crucial in predicting the physiological response preferentially elicited by individual seaweed extracts
Evaluation of Seaweed Extracts from Laminaria and Ascophyllum nodosum spp. as Biostimulants in Zea mays L. Using a Combination of Chemical, Biochemical and Morphological Approaches
Seaweed extracts can be employed as biostimulants during crop cultivation owing to their positive effects on plant performance. Therefore, in this study one extract from Laminaria (A) and five extracts from Ascophyllum nodosum (B\u2013F) were assayed on maize (Zea mays L.) plants supplied for 2 days with 0.5mL L 121 of single products to evaluate their capacity to stimulate root growth and morphology, nutrition, and sugars accumulation. Firstly, extracts were chemically characterized via Fourier transform infrared (FT-IR) and FT-Raman spectroscopies, and their content in carbon, nitrogen, phenolic acids and hormones (indole-3-acetic acid, IAA, and Isopentenyladenosine, IPA) was quantified. The auxin like- and gibberellic acid -like activities of all extracts were also determined. FT-IR and FT-Raman spectra provided complementary information depicting distinct spectral pattern for each extract. Bands assigned to alginic and uronic acids were dominant in FT-IR spectra, while those corresponding to polyaromatic rings were evident in FT-Raman spectra. In general, extracts stimulated root growth, nutrition, esterase activity, and sugar content. However, they showed high variation in chemical features,
which may explain their different capacity in triggering physiological responses in maize. Among A. nodosum extracts for instance, E was the most efficient in promoting root morphology traits, likely because of its elevate content in IAA (32.43 nM), while F extract was the highest in phenol content (1,933mg L 121) and the most successful in improving plant nutrition. On the other hand, C extract was very effective in stimulating root elongation, but did not influence plant nutrition. B and D extracts induced similar positive effects on plants, although they greatly varied in chemical composition. Laminaria extract (A) differed from A. nodosum extracts, because of its low content in total phenols and the presence of both IAA- and GA-like activity. We conclude that all seaweed extracts acted as biostimulants in maize, but their chemical properties appeared crucial in predicting the physiological response preferentially elicited by individual seaweed extracts
Short-Term Application of Polymer-Coated Mono-Ammonium Phosphate in a Calcareous Soil Affects the Pools of Available Phosphorus and the Growth of Hypericum 7 moserianum (L.)
Mineral phosphorus (P) fertilization in calcareous soils is not efficient enough to ensure optimal plant growth. Therefore, a higher P input is generally needed. Polymer-coated fertilizers are a promising fertilizer category that seems to affect soil extractable P, thus permitting a reduction in fertilizer rates. We tested this hypothesis in a short-term (45 days) field trial by evaluating both the agronomic and the environmental implications. In this study, two conventional fertilizers (single superphosphate, SSP; mono-ammonium phosphate, MAP) and a slow P-release fertilizer (polymer-coated MAP, PCMAP) were tested for their effects on soil P pools by combining different P rates and degrees of coating. The P soil test was determined with either Olsen or Mehlich-3 solution (available P), whereas the P soil release was estimated through water extraction. The efficiency of fertilizers was evaluated by assessing the growth of Hypericum × moserianum (L.) plants. As expected, both SSP and MAP influenced the soil Mehlich-3-P, Olsen-P, and water-P, as concentrations increased with the fertilizer rate. Conversely, PCMAP decreased the soil extractable P with increasing coating. The plant dry weight and P uptake linearly correlated with the fertilizer rate for SSP and MAP, whilst they achieved the maximum yield with PCMAP. This result indicates the underdosing for conventional fertilizers. With reference to the soil test P with water-P, the presence of change points showed low water-P release concentrations for PCMAP and SSP, and high water-P release for MAP. In conclusion, in the short-term period both soil extractable P and water-P depend on the type of fertilizer, whereas the amount of added P has rather a secondary role. PCMAP, in particular, ensures high plant P use efficiency with minimum environmental impacts
Short-Term Application of Polymer-Coated Mono-Ammonium Phosphate in a Calcareous Soil Affects the Pools of Available Phosphorus and the Growth of Hypericum × moserianum (L.)
Mineral phosphorus (P) fertilization in calcareous soils is not efficient enough to ensure optimal plant growth. Therefore, a higher P input is generally needed. Polymer-coated fertilizers are a promising fertilizer category that seems to affect soil extractable P, thus permitting a reduction in fertilizer rates. We tested this hypothesis in a short-term (45 days) field trial by evaluating both the agronomic and the environmental implications. In this study, two conventional fertilizers (single superphosphate, SSP; mono-ammonium phosphate, MAP) and a slow P-release fertilizer (polymer-coated MAP, PCMAP) were tested for their effects on soil P pools by combining different P rates and degrees of coating. The P soil test was determined with either Olsen or Mehlich-3 solution (available P), whereas the P soil release was estimated through water extraction. The efficiency of fertilizers was evaluated by assessing the growth of Hypericum × moserianum (L.) plants. As expected, both SSP and MAP influenced the soil Mehlich-3-P, Olsen-P, and water-P, as concentrations increased with the fertilizer rate. Conversely, PCMAP decreased the soil extractable P with increasing coating. The plant dry weight and P uptake linearly correlated with the fertilizer rate for SSP and MAP, whilst they achieved the maximum yield with PCMAP. This result indicates the underdosing for conventional fertilizers. With reference to the soil test P with water-P, the presence of change points showed low water-P release concentrations for PCMAP and SSP, and high water-P release for MAP. In conclusion, in the short-term period both soil extractable P and water-P depend on the type of fertilizer, whereas the amount of added P has rather a secondary role. PCMAP, in particular, ensures high plant P use efficiency with minimum environmental impacts
Innovative approaches to evaluate sugar beet responses to changes in sulfate availability
In this study, a system based on omics profiling was set-up for sugar beet (Beta vulgaris L. subsp. vulgaris) evaluation after changes in sulfate availability. Seedlings were grown on sulfate-deprived Hoagland solution. Six days after germination, 100 \ub5M MgSO4was added to the solution. Root samples were collected 36 h after treatments. WinRHIZO root-scanning approach was used for the automated image analysis of plant root morphology. Inductively Coupled Plasma Spectrometry (ICP-OES) and quadrupole-time-of-flight mass spectrometry (Q-TOF) were used for ionomic and metabolic analysis, respectively. Nanofluidic real-time PCR (OpenArray system) was used for molecular profiling. OpenArray chips were designed with TaqMan probes for 53 sugar beet genes putatively involved in sulfate nutrition. At morphological level treated seedlings showed significantly higher values (P < 0.01) than untreated plants for root traits related to soil exploration and nutrient uptake, such as total root length, fine roots length and root tips number. ICP-OES, Q-TOF and transcriptomic data revealed changes due to sulfate availability in sugar beet samples. Two key results are highlighted in sulfate-supplied roots and leaves. Firstly, high expression levels of auxin efflux carrier component 1 (PIN) and 5-phosphoribosyl-anthranilate, precursor of tryptophan and auxin synthesis, were observed in roots. Secondly, high levels of 2-Cys peroxiredoxin BAS1, chloroplastic, thioredoxin reductase (NADPH) and cysteine synthase, chloroplastic/chromoplastic, O-acetylserine sulfhydrylase, involved in protection against oxidative stress and cysteine synthase activity, respectively, were observed in leaves. Based on our findings, the combination of evaluated omics approaches could become a key system for the evaluation of the nutritional status of sugar beet under different nutrient availability conditions
- …