7 research outputs found

    Plasticity of Central Chemoreceptors: Effect of Bilateral Carotid Body Resection on Central CO2 Sensitivity

    Get PDF
    Bilateral carotid body resection in three individuals led to reduced sensitivity of central chemoreceptors to CO2, followed by a gradual return, providing evidence of central plasticity within the ventilatory control system

    Colorectal liver metastases: Surgery versus thermal ablation (COLLISION) - a phase III single-blind prospective randomized controlled trial

    Get PDF
    Background: Radiofrequency ablation (RFA) and microwave ablation (MWA) are widely accepted techniques to eliminate small unresectable colorectal liver metastases (CRLM). Although previous studies labelled thermal ablation inferior to surgical resection, the apparent selection bias when comparing patients with unresectable disease to surgical candidates, the superior safety profile, and the competitive overall survival results for the more recent reports mandate the setup of a randomized controlled trial. The objective of the COLLISION trial is to prove non-inferiority of thermal ablation compared to hepatic resection in patients with at least one resectable and ablatable CRLM and no extrahepatic disease. Methods: In this two-arm, single-blind multi-center phase-III clinical trial, six hundred and eighteen patients with at least one CRLM (≤3cm) will be included to undergo either surgical resection or thermal ablation of appointed target lesion(s) (≤3cm). Primary endpoint is OS (overall survival, intention-to-treat analysis). Main secondary endpoints are overall disease-free survival (DFS), time to progression (TTP), time to local progression (TTLP), primary and assisted technique efficacy (PTE, ATE), procedural morbidity and mortality, length of hospital stay, assessment of pain and quality of life (QoL), cost-effectiveness ratio (ICER) and quality-adjusted life years (QALY). Discussion: If thermal ablation proves to be non-inferior in treating lesions ≤3cm, a switch in treatment-method may lead to a reduction of the post-procedural morbidity and mortality, length of hospital stay and incremental costs without compromising oncological outcome for patients with CRLM. Trial registration:NCT03088150 , January 11th 2017

    The respiratory response to carbon dioxide in humans with unilateral and bilateral resections of the carotid bodies

    No full text
    The acute hypercapnic ventilatory response (AHCVR) arises from both peripheral and central chemoreflexes. In humans, one technique for identifying the separate contributions of these chemoreflexes to AHCVR has been to associate the rapid component of AHCVR with the peripheral chemoreflex and the slow component with the central chemoreflex. Our first aim was to validate this technique further by determining whether a single slow component was sufficient to describe AHCVR in patients with bilateral carotid body resections (BR) for glomus cell tumours. Our second aim was to determine whether the slow component of AHCVR was diminished following carotid body resection as has been suggested by studies in experimental animals. Seven BR subjects were studied together with seven subjects with unilateral resections (UR) and seven healthy controls. A multifrequency binary sequence in end-tidal PCO2 was employed to stimulate ventilation dynamically under conditions of both euoxia and mild hypoxia. Both two- and one-compartment models of AHCVR were fitted to the data. For BR subjects, the two-compartment model fitted significantly better on 1 out of 13 occasions compared with 22 out of 28 occasions for the other subjects. Average values for the chemoreflex sensitivity of the slow component of AHCVR differed significantly (P < 0.05) between the groups and were 0.95, 1.38 and 1.50 l min−1 Torr−1 for BR, UR and control subjects, respectively. We conclude that, without the peripheral chemoreflex, AHCVR is adequately described by a single slow component and that BR subjects have sensitivities for the slow component that are lower than those of control subjects

    Antioxidants prevent depression of the acute hypoxic ventilatory response by subanaesthetic halothane in men

    No full text
    We studied the effect of the antioxidants (AOX) ascorbic acid (2 g, I.V.) and α-tocopherol (200 mg, P.O.) on the depressant effect of subanaesthetic doses of halothane (0.11 % end-tidal concentration) on the acute isocapnic hypoxic ventilatory response (AHR), i.e. the ventilatory response upon inhalation of a hypoxic gas mixture for 3 min (leading to a haemoglobin saturation of 82 ± 1.8 %) in healthy male volunteers. In the first set of protocols, two groups of eight subjects each underwent a control hypoxic study, a halothane hypoxic study and finally a halothane hypoxic study after pretreatment with AOX (study 1) or placebo (study 2). Halothane reduced the AHR by more than 50 %, from 0.79 ± 0.31 to 0.36 ± 0.14 l min−1 %−1 in study 1 and from 0.79 ± 0.40 to 0.36 ± 0.19 l min−1 %−1 in study 2, P < 0.01 for both. Pretreatment with AOX prevented this depressant effect of halothane in the subjects of study 1 (AHR returning to 0.77 ± 0.32 l min−1 %−1, n.s. from control), whereas placebo (study 2) had no effect (AHR remaining depressed at 0.36 ± 0.27 l min−1 %−1, P < 0.01 from control). In a second set of protocols, two separate groups of eight subjects each underwent a control hypoxic study, a sham halothane hypoxic study and finally a sham halothane hypoxic study after pretreatment with AOX (study 3) or placebo (study 4). In studies 3 and 4, sham halothane did not modify the control hypoxic response, nor did AOX (study 3) or placebo (study 4). The 95 % confidence intervals for the ratio of hypoxic sensitivities, (AOX + halothane):halothane in study 1 and (AOX - sham halothane):sham halothane in study 3, were [1.7, 2.6] and [1.0, 1.2], respectively. Because the antioxidants prevented the reduction of the acute hypoxic response by halothane, we suggest that this depressant effect may be caused by reactive species produced by a reductive metabolism of halothane during hypoxia or that a change in redox state of carotid body cells by the antioxidants prevented or changed the binding of halothane to its effect site. Our findings may also suggest that reactive species have an inhibiting effect on the acute hypoxic ventilatory response
    corecore