9 research outputs found

    HERC6 is the main E3 ligase for global ISG15 conjugation in mouse cells

    Get PDF
    Type I interferon (IFN) stimulates expression and conjugation of the ubiquitin-like modifier IFN-stimulated gene 15 (ISG15), thereby restricting replication of a wide variety of viruses. Conjugation of ISG15 is critical for its antiviral activity in mice. HECT domain and RCC1-like domain containing protein 5 (HerC5) mediates global ISGylation in human cells, whereas its closest relative, HerC6, does not. So far, the requirement of HerC5 for ISG15-mediated antiviral activity has remained unclear. One of the main obstacles to address this issue has been that no HerC5 homologue exists in mice, hampering the generation of a good knock-out model. However, mice do express a homologue of HerC6 that, in contrast to human HerC6, can mediate ISGylation. Here we report that the mouse HerC6 N-terminal RCC1-like domain (RLD) allows ISG15 conjugation when replacing the corresponding domain in the human HerC6 homologue. In addition, sequences in the C-terminal HECT domain of mouse HerC6 also appear to facilitate efficient ISGylation. Mouse HerC6 paralleled human HerC5 in localization and IFN-inducibility. Moreover, HerC6 knock-down in mouse cells abolished global ISGylation, whereas its over expression enhanced the IFNβ promoter and conferred antiviral activity against vesicular stomatitis virus and Newcastle disease virus. Together these data indicate that HerC6 is likely the functional counterpart of human HerC5 in mouse cells, suggesting that HerC6-/-mice may provide a feasible model to study the role of human HerC5 in antiviral responses

    Antiviral Innate Immune Response Interferes with the Formation of Replication-Associated Membrane Structures Induced by a Positive-Strand RNA Virus

    No full text
    Infection with nidoviruses like corona- and arteriviruses induces a reticulovesicular network of interconnected endoplasmic reticulum (ER)-derived double-membrane vesicles (DMVs) and other membrane structures. This network is thought to accommodate the viral replication machinery and protect it from innate immune detection. We hypothesized that the innate immune response has tools to counteract the formation of these virus-induced replication organelles in order to inhibit virus replication. Here we have investigated the effect of type I interferon (IFN) treatment on the formation of arterivirus-induced membrane structures. Our approach involved ectopic expression of arterivirus nonstructural proteins nsp2 and nsp3, which induce DMV formation in the absence of other viral triggers of the interferon response, such as replicating viral RNA. Thus, this setup can be used to identify immune effectors that specifically target the (formation of) virus-induced membrane structures. Using large-scale electron microscopy mosaic maps, we found that IFN-β treatment significantly reduced the formation of the membrane structures. Strikingly, we also observed abundant stretches of double-membrane sheets (a proposed intermediate of DMV formation) in IFN-β-treated samples, suggesting the disruption of DMV biogenesis. Three interferon-stimulated gene products, two of which have been reported to target the hepatitis C virus replication structures, were tested for their possible involvement, but none of them affected membrane structure formation. Our study reveals the existence of a previously unknown innate immune mechanism that antagonizes the viral hijacking of host membranes. It also provides a solid basis for further research into the poorly understood interactions between the innate immune system and virus-induced replication structures

    mHerC6 is induced by type I interferon and localizes exclusively in the cytoplasm.

    No full text
    <p>A. Indicated murine and human cell lines were stimulated with recombinant type I IFN and subsequently analyzed for HerC mRNA regulation by RT-qPCR. Values are relative fold-change over mock-induced samples. Experiments were reproduced at least twice; a representative experiment is shown. Error bars represent standard deviation of qPCR replicates. B. HeLa cells transfected with an empty control plasmid and subsequently infected with SeV were immuno-stained with IRF-3 specific antibodies. C. Localization of overexpressed HA-tagged HerC proteins in the presence of subsequent SeV infection was determined in HeLa cells by immuno-fluorescence assay using HA- and SeV-specific antibodies.</p

    mHerC6 stimulates the IFNβ promoter and confers antiviral activity against VSV and NDV.

    No full text
    <p>(A) HEK-293T cells were transfected with an IFNβ reporter construct controlling firefly luciferase, a constitutively active renilla luciferase internal control plasmid, a limiting amount of a plasmid expressing a constitutively active form of RIG-I (RIG-I(2CARD)) and the indicated HerC5/6 proteins. After 24 h, cells were lysed and luciferase measured. Values were normalized to the internal control and plotted relative to the GST control. (B) L-929 cells were transfected with the indicated plasmids. After 48 h, the cells were infected with VSV-GFP or NDV-GFP at an m.o.i. of 5. At 7 h p.i. supernatant was harvested from the VSV-GFP infected cells and at 16 h p.i. from the NDV-GFP infected cells. The supernatants were tittered by TCID50 on HEK-293T cells.</p

    mHerC6 is essential for global cellular ISG15 conjugation in mouse cells.

    No full text
    <p>(A) mRNA knock-down of HerC6 was analyzed by RT-qPCR in mouse L929 cells transfected with siRNAs specifically targeting human or mouse HerC6 and subsequently treated with recombinant type I IFN. mRNA levels in mHerC6 knock-down cells are plotted relative to mRNA levels in cells with non-targeting hHerC6 siRNA. Experiments were reproduced at least twice; a representative experiment is shown. Error bars represent standard deviation of qPCR replicates. B/C. L-929 cells were transfected with (B) indicated siRNAs, stimulated with IFN for 48 h and probed for endogenous ISG15 on a Western blot or (C) simultaneously transfected with a V5-tagged mouse ISG15 plasmid and indicated siRNAs, stimulated with IFN for 48 h and subsequently analyzed for global ISG15 conjugation by V5-specific immunoblot.</p

    MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-α treatment

    Get PDF
    Coronavirus (CoV) infections are commonly associated with respiratory and enteric disease in humans and animals. The 2003 outbreak of severe acute respiratory syndrome (SARS) highlighted the potentially lethal consequences of CoV-induced disease in humans. In 2012, a novel CoV (Middle East Respiratory Syndrome coronavirus; MERS-CoV) emerged, causing 49 human cases thus far, of which 23 had a fatal outcome. In this study, we characterized MERS-CoV replication and cytotoxicity in human and monkey cell lines. Electron microscopy of infected Vero cells revealed extensive membrane rearrangements, including the formation of doublemembrane vesicles and convoluted membranes, which have been implicated previously in the RNA synthesis of SARS-CoV and other CoVs. Following infection, we observed rapidly increasing viral RNA synthesis and release of high titres of infectious progeny, followed by a pronounced cytopathology. These characteristics were used to develop an assay
    corecore