6 research outputs found

    In vitro modeling of endothelial interaction with macrophages and pericytes demonstrates Notch signaling function in the vascular microenvironment.

    Get PDF
    Angiogenesis is regulated by complex interactions between endothelial cells and support cells of the vascular microenvironment, such as tissue myeloid cells and vascular mural cells. Multicellular interactions during angiogenesis are difficult to study in animals and challenging in a reductive setting. We incorporated stromal cells into an established bead-based capillary sprouting assay to develop assays that faithfully reproduce major steps of vessel sprouting and maturation. We observed that macrophages enhance angiogenesis, increasing the number and length of endothelial sprouts, a property we have dubbed "angiotrophism." We found that polarizing macrophages toward a pro-inflammatory profile further increased their angiotrophic stimulation of vessel sprouting, and this increase was dependent on macrophage Notch signaling. To study endothelial/pericyte interactions, we added vascular pericytes directly to the bead-bound endothelial monolayer. These pericytes formed close associations with the endothelial sprouts, causing increased sprout number and vessel caliber. We found that Jagged1 expression and Notch signaling are essential for the growth of both endothelial cells and pericytes and may function in their interaction. We observed that combining endothelial cells with both macrophages and pericytes in the same sprouting assay has multiplicative effects on sprouting. These results significantly improve bead-capillary sprouting assays and provide an enhanced method for modeling interactions between the endothelium and the vascular microenvironment. Achieving this in a reductive in vitro setting represents a significant step toward a better understanding of the cellular elements that contribute to the formation of mature vasculature.S

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Clonal evolution mechanisms in NT5C2 mutant-relapsed acute lymphoblastic leukaemia

    No full text
    Relapsed acute lymphoblastic leukaemia (ALL) is associated with resistance to chemotherapy and poor prognosis. Gain-of-function mutations in the 5'-nucleotidase, cytosolic II (NT5C2) gene induce resistance to 6-mercaptopurine and are selectively present in relapsed ALL. Yet, the mechanisms involved in NT5C2 mutation-driven clonal evolution during the initiation of leukaemia, disease progression and relapse remain unknown. Here we use a conditional-and-inducible leukaemia model to demonstrate that expression of NT5C2(R367Q), a highly prevalent relapsed-ALL NT5C2 mutation, induces resistance to chemotherapy with 6-mercaptopurine at the cost of impaired leukaemia cell growth and leukaemia-initiating cell activity. The loss-of-fitness phenotype of NT5C2+/R367Q mutant cells is associated with excess export of purines to the extracellular space and depletion of the intracellular purine-nucleotide pool. Consequently, blocking guanosine synthesis by inhibition of inosine-5'-monophosphate dehydrogenase (IMPDH) induced increased cytotoxicity against NT5C2-mutant leukaemia lymphoblasts. These results identify the fitness cost of NT5C2 mutation and resistance to chemotherapy as key evolutionary drivers that shape clonal evolution in relapsed ALL and support a role for IMPDH inhibition in the treatment of ALL
    corecore