203 research outputs found

    Resource-aware configuration in smart camera networks

    Get PDF
    A recent trend in smart camera networks is that they are able to modify the functionality during runtime to better reflect changes in the observed scenes and in the specified monitoring tasks. In this paper we focus on different configuration methods for such networks. A configuration is given by three components: (i) a description of the camera nodes, (ii) a specification of the area of interest by means of observation points and the associated monitoring activities, and (iii) a description of the analysis tasks. We introduce centralized, distributed and proprioceptive configuration methods and compare their properties and performance

    Dietary iron intake and risk of coronary disease among men.

    Full text link

    The hunter River estuary water quality model

    Full text link
    © Australasian Coasts and Ports 2019 Conference. All rights reserved. This paper presents a detailed hydrodynamic and water quality model to simulate ecological processes in the Hunter River estuary. Following an extensive 3-year multi-disciplinary field campaign, the model was developed to assess total catchment management options. The model outcomes are linked to existing water sharing plans, pollution reduction plans and coastal reforms underway in NSW. Initially a detailed scoping study was undertaken to determine the values and requirements of the key stakeholders across the catchment. Data gaps were subsequently prioritised, and an inter-agency modelling oversight committee was formed to ensure that the modelling tools would be accepted across the region. Following these developmental stages, a field program was initiated which included: estuary wide flow gauging and water quality assessments, microbial linkages, ecotoxicological assessments, sedimentation dynamics, DNA sequencing, qPCR analyses, catchment hydrological flux measurements, nutrient mesocosm experiments, bathymetry surveys and the development of crop irrigation modules. The field data analyses resulted in a conceptual model of the eco-hydraulics of the estuary. A robust numerical model was formulated through an extensive process of external peer review. A source model was selected that ensured the broadest flexibility and ongoing usage rates. A multi-disciplinary approach was undertaken to ensure the model represents a wide range of estuarine processes. The final model is currently undergoing additional peer review, calibration/validation and simulation testing
    corecore