19 research outputs found

    The priming effect of extracellular UTP on human neutrophils: Role of calcium released from thapsigargin-sensitive intracellular stores

    Get PDF
    P2Y2 receptors, which are equally responsive to ATP and UTP, can trigger intracellular signaling events, such as intracellular calcium mobilization and mitogen-activated protein (MAP) kinase phosphorylation in polymorphonuclear leukocytes (PMN). Moreover, extracellular nucleotides have been shown to prime chemoattractant-induced superoxide production. The aim of our study was to investigate the mechanism responsible for the priming effect of extracellular nucleotides on reactive oxygen species (ROS) production induced in human neutrophils by two different chemoattractants: formyl-methionyl-leucyl-phenylalanine (fMLP) and interleukin-8 (IL-8). Nucleotide-induced priming of ROS production was concentration- and time-dependent. When UTP was added to neutrophil suspensions prior to chemoattractant, the increase of the response reached the maximum at 1 min of pre-incubation with the nucleotide. UTP potentiated the phosphorylation of p44/42 and p38 MAP kinases induced by chemoattractants, however the P2 receptor-mediated potentiation of ROS production was still detectable in the presence of a SB203580 or U0126, supporting the view that MAP kinases do not play a major role in regulating the nucleotide-induced effect. In the presence of thapsigargin, an inhibitor of the ubiquitous sarco-endoplasmic reticulum Ca2+-ATPases in mammalian cells, the effect of fMLP was not affected, but UTP-induced priming was abolished, suggesting that the release of calcium from thapsigargin-sensitive intracellular stores is essential for nucleotide-induced priming in human neutrophils

    Chronic Granulomatous Disease; fundamental stages in our understanding of CGD

    Get PDF
    It has been 50 years since chronic granulomatous disease was first reported as a disease which fatally affected the ability of children to survive infections. Various milestone discoveries from the insufficient ability of patients' leucocytes to destroy microbial particles to the underlying genetic predispositions through which the disease is inherited have had important consequences. Longterm antibiotic prophylaxis has helped to fight infections associated with chronic granulomatous disease while the steady progress in bone marrow transplantation and the prospect of gene therapy are hailed as long awaited permanent treatment options. This review unearths the important findings by scientists that have led to our current understanding of the disease

    Systematic analysis of copy number variants of a large cohort of orofacial cleft patients identifies candidate genes for orofacial clefts

    Get PDF

    Regulation of the formyl peptide receptor 1 (FPR1) gene in primary human macrophages

    Get PDF
    The formyl peptide receptor 1 (FPR1) is mainly expressed by mammalian phagocytic leukocytes and plays a role in chemotaxis, killing of microorganisms through phagocytosis, and the generation of reactive oxygen species. A large number of ligands have been identified triggering FPR1 including formylated and non-formylated peptides of microbial and endogenous origin. While the expression of FPR1 in neutrophils has been investigated intensively, knowledge on the regulation of FPR1 expression in polarized macrophages is lacking. In this study we show that primary human neutrophils, monocytes and resting macrophages do express the receptor on their cell surface. Polarization of macrophages with IFNγ, LPS and with the TLR8 ligand 3M-002 further increases FPR1 mRNA levels but does not consistently increase protein expression or chemotaxis towards the FPR1 ligand fMLF. In contrast, polarization of primary human macrophages with IL-4 and IL-13 leading to the alternative activated macrophages, reduces FPR1 cell surface expression and abolishes chemotaxis towards fMLF. These results show that M2 macrophages will not react to triggering of FPR1, limiting the role for FPR1 to chemotaxis and superoxide production of resting and pro-inflammatory M1 macrophages
    corecore