38 research outputs found

    The Coplane Analysis Technique for Three-Dimensional Wind Retrieval Using the HIWRAP Airborne Doppler Radar

    Get PDF
    The coplane analysis technique for mapping the three-dimensional wind field of precipitating systems is applied to the NASA High Altitude Wind and Rain Airborne Profiler (HIWRAP). HIWRAP is a dual-frequency Doppler radar system with two downward pointing and conically scanning beams. The coplane technique interpolates radar measurements to a natural coordinate frame, directly solves for two wind components, and integrates the mass continuity equation to retrieve the unobserved third wind component. This technique is tested using a model simulation of a hurricane and compared to a global optimization retrieval. The coplane method produced lower errors for the cross-track and vertical wind components, while the global optimization method produced lower errors for the along-track wind component. Cross-track and vertical wind errors were dependent upon the accuracy of the estimated boundary condition winds near the surface and at nadir, which were derived by making certain assumptions about the vertical velocity field. The coplane technique was then applied successfully to HIWRAP observations of Hurricane Ingrid (2013). Unlike the global optimization method, the coplane analysis allows for a transparent connection between the radar observations and specific analysis results. With this ability, small-scale features can be analyzed more adequately and erroneous radar measurements can be identified more easily

    A methodology to estimate the potential to move inpatient to one day surgery

    Get PDF
    BACKGROUND: The proportion of surgery performed as a day case varies greatly between countries. Low rates suggest a large growth potential in many countries. Measuring the potential development of one day surgery should be grounded on a comprehensive list of eligible procedures, based on a priori criteria, independent of local practices. We propose an algorithmic method, using only routinely available hospital data to identify surgical hospitalizations that could have been performed as one day treatment. METHODS: Moving inpatient surgery to one day surgery was considered feasible if at least one surgical intervention was eligible for one day surgery and if none of the following criteria were present: intervention or affection requiring an inpatient stay, patient transferred or died, and length of stay greater than four days. The eligibility of a procedure to be treated as a day case was mainly established on three a priori criteria: surgical access (endoscopic or not), the invasiveness of the procedure and the size of the operated organ. Few overrides of these criteria occurred when procedures were associated with risk of immediate complications, slow physiological recovery or pain treatment requiring hospital infrastructure. The algorithm was applied to a random sample of one million inpatient US stays and more than 600 thousand Swiss inpatient stays, in the year 2002. RESULTS: The validity of our method was demonstrated by the few discrepancies between the a priori criteria based list of eligible procedures, and a state list used for reimbursement purposes, the low proportion of hospitalizations eligible for one day care found in the US sample (4.9 versus 19.4% in the Swiss sample), and the distribution of the elective procedures found eligible in Swiss hospitals, well supported by the literature. There were large variations of the proportion of candidates for one day surgery among elective surgical hospitalizations between Swiss hospitals (3 to 45.3%). CONCLUSION: The proposed approach allows the monitoring of the proportion of inpatient stay candidates for one day surgery. It could be used for infrastructure planning, resources negotiation and the surveillance of appropriate resource utilization

    Non-Fourier Melting of a Semi-Infinite Solid

    No full text

    Testing an Active Intervention to Deter Researchers\u27 Use of Questionable Research Practices

    Get PDF
    Introduction: In this study, we tested a simple, active “ethical consistency” intervention aimed at reducing researchers’ endorsement of questionable research practices (QRPs). Methods: We developed a simple, active ethical consistency intervention and tested it against a control using an established QRP survey instrument. Before responding to a survey that asked about attitudes towards each of fifteen QRPs, participants were randomly assigned to either a consistency or control 3–5-min writing task. A total of 201 participants completed the survey: 121 participants were recruited from a database of currently funded NSF/NIH scientists, and 80 participants were recruited from a pool of active researchers at a large university medical center in the southeastern US. Narrative responses to the writing prompts were coded and analyzed to assist post hoc interpretation of the quantitative data. Results: We hypothesized that participants in the consistency condition would find ethically ambiguous QRPs less defensible and would indicate less willingness to engage in them than participants in the control condition. The results showed that the consistency intervention had no significant effect on respondents’ reactions regarding the defensibility of the QRPs or their willingness to engage in them. Exploratory analyses considering the narrative themes of participants’ responses indicated that participants in the control condition expressed lower perceptions of QRP defensibility and willingness. Conclusion: The results did not support the main hypothesis, and the consistency intervention may have had the unwanted effect of inducing increased rationalization. These results may partially explain why RCR courses often seem to have little positive effect
    corecore