9 research outputs found
NGTS clusters survey -- II. White-light flares from the youngest stars in Orion
We present the detection of high energy white-light flares from pre-main sequence stars associated with the Orion complex, observed as part of the Next Generation Transit Survey (NGTS). With energies up to 5.2 × 1035 erg these flares are some of the most energetic white-light flare events seen to date. We have used the NGTS observations of flaring and non-flaring stars to measure the average flare occurrence rate for 4 Myr M0-M3 stars. We have also combined our results with those from previous studies to predict average rates for flares above 1 × 1035 ergs for early M stars in nearby young associations
NGTS clusters survey - I. Rotation in the young benchmark open cluster Blanco 1
We determine rotation periods for 127 stars in the ~115 Myr old Blanco 1 open
cluster using ~200 days of photometric monitoring with the Next Generation
Transit Survey (NGTS). These stars span F5-M3 spectral types (1.2 0.3 M) and increase the number of known rotation periods in
Blanco 1 by a factor of four. We determine rotation periods using three
methods: Gaussian process (GP) regression, generalised autocorrelation (G-ACF)
and Lomb-Scargle (LS) periodograms, and find that GPs and G-ACF are more
applicable to evolving spot modulation patterns. Between mid-F and mid-K
spectral types, single stars follow a well-defined rotation sequence from ~2 to
10 days, whereas stars in photometric multiple systems typically rotate faster.
This may suggest that the presence of a moderate-to-high mass ratio companion
inhibits angular momentum loss mechanisms during the early pre-main sequence,
and this signature has not been erased at ~100 Myr. The majority of mid-F to
mid-K stars display evolving modulation patterns, whereas most M stars show
stable modulation signals. This morphological change coincides with the shift
from a well-defined rotation sequence (mid-F to mid-K stars) to a broad
rotation period distribution (late-K and M stars). Finally, we compare our
rotation results for Blanco 1 to the similarly-aged Pleiades: the single star
populations in both clusters possess consistent rotation period distributions,
which suggests that the angular momentum evolution of stars follows a
well-defined pathway that is, at least for mid-F to mid-K stars, strongly
imprinted by ~100 Myr
Stellar flares detected with the Next Generation Transit Survey
We present the results of a search for stellar flares in the first data release from the Next Generation Transit Survey (NGTS). We have found 610 flares from 339 stars, with spectral types between F8 and M6, the majority of which belong to the Galactic thin disc. We have used the 13-s cadence NGTS light curves to measure flare properties such as the flare amplitude, duration, and bolometric energy. We have measured the average flare occurrence rates of K and early to mid-M stars and present a generalized method to measure these rates while accounting for changing detection sensitivities. We find that field age K and early M stars show similar flare behaviour, while fully convective M stars exhibit increased white-light flaring activity, which we attribute to their increased spin-down time. We have also studied the average flare rates of pre-main-sequence K and M stars, showing they exhibit increased flare activity relative to their main-sequence counterparts
Simultaneous TESS and NGTS Transit Observations of WASP-166b
We observed a transit of WASP-166 b using nine NGTS telescopes simultaneously
with TESS observations of the same transit. We achieved a photometric precision
of 152 ppm per 30 minutes with the nine NGTS telescopes combined, matching the
precision reached by TESS for the transit event around this bright (T=8.87)
star. The individual NGTS light curve noise is found to be dominated by
scintillation noise and appears free from any time-correlated noise or any
correlation between telescope systems. We fit the NGTS data for and
. We find to be consistent to within 0.25 of the result
from the TESS data, and the difference between the TESS and NGTS measured
values is 0.9. This experiment shows that multi-telescope
NGTS photometry can match the precision of TESS for bright stars, and will be a
valuable tool in refining the radii and ephemerides for bright TESS candidates
and planets. The transit timing achieved will also enable NGTS to measure
significant transit timing variations in multi-planet systems
NGTS clusters survey - III. A low-mass eclipsing binary in the Blanco 1 open cluster spanning the fully convective boundary
We present the discovery and characterization of an eclipsing binary identified by the Next Generation Transit Survey in the ∼115-Myr-old Blanco 1 open cluster. NGTS J0002-29 comprises three M dwarfs: a short-period binary and a companion in a wider orbit. This system is the first well-characterized, low-mass eclipsing binary in Blanco 1. With a low mass ratio, a tertiary companion, and binary components that straddle the fully convective boundary, it is an important benchmark system, and one of only two well-characterized, low-mass eclipsing binaries at this age. We simultaneously model light curves from NGTS, TESS, SPECULOOS, and SAAO, radial velocities from VLT/UVES and Keck/HIRES, and the system’s spectral energy distribution. We find that the binary components travel on circular orbits around their common centre of mass in Porb = 1.098 005 24 ± 0.000 000 38 d, and have masses Mpri = 0.3978 ± 0.0033 M☉ and Msec = 0.2245 ± 0.0018 M☉, radii Rpri = 0.4037 ± 0.0048 R☉ and Rsec = 0.2759 ± 0.0055 R☉, and effective temperatures Tpri = 3372+44-37 K and Tsec = 3231+38-31 K. We compare these properties to the predictions of seven stellar evolution models, which typically imply an inflated primary. The system joins a list of 19 well-characterized, low-mass, sub-Gyr, stellar-mass eclipsing binaries, which constitute some of the strongest observational tests of stellar evolution theory at low masses and young ages
NGTS 15b, 16b, 17b and 18b: four hot Jupiters from the Next Generation Transit Survey
We report the discovery of four new hot Jupiters with the Next Generation
Transit Survey (NGTS). NGTS-15b, NGTS-16b, NGTS-17b, and NGTS-18b are
short-period (d) planets orbiting G-type main sequence stars, with radii
and masses between and . By considering the
host star luminosities and the planets' small orbital separations
( AU), we find that all four hot Jupiters are highly irradiated
and therefore occupy a region of parameter space in which planetary inflation
mechanisms become effective. Comparison with statistical studies and a
consideration of the planets' high incident fluxes reveals that NGTS-16b,
NGTS-17b, and NGTS-18b are indeed likely inflated, although some disparities
arise upon analysis with current Bayesian inflationary models. However, the
underlying relationships which govern radius inflation remain poorly
understood. We postulate that the inclusion of additional hyperparameters to
describe latent factors such as heavy element fraction, as well as the addition
of an updated catalogue of hot Jupiters, would refine inflationary models, thus
furthering our understanding of the physical processes which give rise to
inflated planets
NGTS 15b, 16b, 17b and 18b: four hot Jupiters from the Next Generation Transit Survey
We report the discovery of four new hot Jupiters with the Next Generation
Transit Survey (NGTS). NGTS-15b, NGTS-16b, NGTS-17b, and NGTS-18b are
short-period (d) planets orbiting G-type main sequence stars, with radii
and masses between and . By considering the
host star luminosities and the planets' small orbital separations
( AU), we find that all four hot Jupiters are highly irradiated
and therefore occupy a region of parameter space in which planetary inflation
mechanisms become effective. Comparison with statistical studies and a
consideration of the planets' high incident fluxes reveals that NGTS-16b,
NGTS-17b, and NGTS-18b are indeed likely inflated, although some disparities
arise upon analysis with current Bayesian inflationary models. However, the
underlying relationships which govern radius inflation remain poorly
understood. We postulate that the inclusion of additional hyperparameters to
describe latent factors such as heavy element fraction, as well as the addition
of an updated catalogue of hot Jupiters, would refine inflationary models, thus
furthering our understanding of the physical processes which give rise to
inflated planets
NGTS-11 b / TIC-54002556 b: A transiting warm Saturn recovered from a TESS single-transit event
We report the discovery of NGTS-11 b (=TIC-54002556 b), a transiting Saturn
in a 35.46-day orbit around a mid K-type star (Teff=5050+-80 K). The system was
initially identified from a single-transit event in our TESS full-frame image
light-curves. Following seventy-nine nights of photometric monitoring with an
NGTS telescope, we observed a second full transit of NGTS-11 b approximately
one year after the TESS single-transit event. The NGTS transit confirmed the
parameters of the transit signal and restricted the orbital period to a set of
13 discrete periods. We combined our transit detections with precise radial
velocity measurements to determine the true orbital period and measure the mass
of the planet. We find NGTS-11 b has a radius of 0.823+-0.035 RJup, a mass of
0.37+-0.14 MJup, and an equilibrium temperature of just 440+-40 K, making it
one of the coolest known transiting gas giants. NGTS-11 b is the first
exoplanet to be discovered after being initially identified as a TESS single
transit event, and its discovery highlights the power of intense photometric
monitoring in recovering longer-period transiting exoplanets from
single-transit events
An ultrahot Neptune in the Neptune desert
About 1 out of 200 Sun-like stars has a planet with an orbital period shorter than one day: an ultrashort-period planet1,2. All of the previously known ultrashort-period planets are either hot Jupiters, with sizes above 10 Earth radii (R⊕), or apparently rocky planets smaller than 2 R⊕. Such lack of planets of intermediate size (the ‘hot Neptune desert’) has been interpreted as the inability of low-mass planets to retain any hydrogen/helium (H/He) envelope in the face of strong stellar irradiation. Here we report the discovery of an ultrashort-period planet with a radius of 4.6 R⊕ and a mass of 29 M⊕, firmly in the hot Neptune desert. Data from the Transiting Exoplanet Survey Satellite3 revealed transits of the bright Sun-like star LTT 9779 every 0.79 days. The planet’s mean density is similar to that of Neptune, and according to thermal evolution models, it has a H/He-rich envelope constituting 9.0+2.7−2.9% of the total mass. With an equilibrium temperature around 2,000 K, it is unclear how this ‘ultrahot Neptune’ managed to retain such an envelope. Follow-up observations of the planet’s atmosphere to better understand its origin and physical nature will be facilitated by the star’s brightness (Vmag = 9.8).<br