30 research outputs found

    Dual effect of the SR proteins ASF/SF2, SC35 and 9G8 on HIV-1 RNA splicing and virion production

    Get PDF
    In HIV-1 infected cells transcription of the integrated provirus generates the single full length 9 kb viral RNA, a major fraction of which is spliced to produce the single-spliced 4 kb RNAs and the multiple-spliced 2 kb RNAs. These spliced RNAs are the messengers for the Env glycoproteins and the viral regulatory factors. The cellular SR and hnRNP proteins were shown in vitro to control alternative splicing by binding cis-regulatory elements on the viral RNA. To better understand in vivo the role of the SR proteins on HIV-1 genomic RNA splicing and virion production, we used a human cell line expressing high levels of complete HIV-1 and either one of the ASF/SF2, SC35, and 9G8 SR proteins. Results show that over-expressing SR proteins caused a large reduction of genomic RNA and that each SR protein modified the viral 9 kb RNA splicing pattern in a specific mode. In fact, ASF/SF2 increased the level of Vpr RNA while SC35 and 9G8 caused a large increase in Tat RNA. As expected, overexpressing SR proteins caused a strong reduction of total Gag made. However, we observed by immuno-confocal microscopy an accumulation of Gag at the plasma membrane and in intracellular compartments while there is a dramatic reduction of Env protein made in most cells. Due to the negative impact of the SR proteins on the levels of genomic RNA and HIV-1 structural proteins much less virions were produced which retained part of their infectivity. In conclusion, SR proteins can down-regulate the late steps of HIV-1 replication

    Dual effect of the SR proteins ASF/SF2, SC35 and 9G8 on HIV-1 RNA splicing and virion production

    Get PDF
    In HIV-1 infected cells transcription of the integrated provirus generates the single full length 9 kb viral RNA, a major fraction of which is spliced to produce the single-spliced 4 kb RNAs and the multiple-spliced 2 kb RNAs. These spliced RNAs are the messengers for the Env glycoproteins and the viral regulatory factors. The cellular SR and hnRNP proteins were shown in vitro to control alternative splicing by binding cis-regulatory elements on the viral RNA. To better understand in vivo the role of the SR proteins on HIV-1 genomic RNA splicing and virion production, we used a human cell line expressing high levels of complete HIV-1 and either one of the ASF/SF2, SC35, and 9G8 SR proteins. Results show that over-expressing SR proteins caused a large reduction of genomic RNA and that each SR protein modified the viral 9 kb RNA splicing pattern in a specific mode. In fact, ASF/SF2 increased the level of Vpr RNA while SC35 and 9G8 caused a large increase in Tat RNA. As expected, overexpressing SR proteins caused a strong reduction of total Gag made. However, we observed by immuno-confocal microscopy an accumulation of Gag at the plasma membrane and in intracellular compartments while there is a dramatic reduction of Env protein made in most cells. Due to the negative impact of the SR proteins on the levels of genomic RNA and HIV-1 structural proteins much less virions were produced which retained part of their infectivity. In conclusion, SR proteins can down-regulate the late steps of HIV-1 replication

    Lentiviral RNAs can use different mechanisms for translation initiation

    Get PDF
    Abstract The full-length genomic RNA of lentiviruses can be translated to produce proteins and incorporated as genomic RNA in the viral particle. Interestingly, both functions are driven by the genomic 5 -UTR (5 -untranslated region), which harbours structural RNA motifs for the replication cycle of the virus. Recent work has shown that this RNA architecture also functions as an IRES (internal ribosome entry site) in HIV-1 and -2, and in SIV (simian immunodeficiency virus). In addition, the IRES extends to the gag coding region for all these viruses and this leads to the synthesis of shorter isoforms of the Gag polyprotein from downstream initiation codons. In the present study, we have investigated how different members of the lentivirus family (namely HIV-1 and -2, and SIV) can initiate protein synthesis by distinct mechanisms. For this, we have used the competitive reticulocyte lysate that we have recently described. Our results show that HIV-1 is able to drive the synthesis of the Gag polyprotein both by a classical cap-dependent mechanism and an IRES, whereas HIV-2 and SIV appear to use exclusively an IRES mechanism

    Etude moleculaire du MHV3 et des variations genetiques de son affinite cellulaire in vivo

    No full text
    SIGLEAvailable from INIST (FR), Document Supply Service, under shelf-number : T 84320 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    In vitro translation in a hybrid cell free lysate with exogenous cellular ribosomes

    No full text
    International audienceCell free protein synthesis systems (CFPS) have been widely used to express proteins and to explore the pathways of gene expression. In the present manuscript, we describe the design of a novel adaptable hybrid in vitro translation system which is assembled with ribosomes isolated from many different origins. We first show that this hybrid system exhibits all important features such as efficiency, sensitivity, reproducibility and the ability to translate specialized mRNAs in less than 1 h. In addition, the unique design of this cell free assay makes it highly adaptable to utilize ribosomes isolated from many different organs, tissues or cell types

    microRNAs stimulate translation initiation mediated by HCV-like IRESes

    No full text
    International audienceMicroRNAs (miRNAs) are small non-coding RNAs that control gene expression by recognizing and hybridizing to a specific sequence generally located in the 3? untranslated region (UTR) of targeted mRNAs. miRNA-induced inhibition of translation occurs during the initiation step, most probably at the level of ribosome scanning. In this process, the RNA-induced silencing complex interacts both with PABP and the 43S pre-initiation complex to disrupt scanning of the 40S ribosome. However, in some specific cases, miRNAs can stimulate translation. Although the mechanism of miRNA-mediated upregulation is unknown, it appears that the poly(A) tail and the lack of availability of the TNRC6 proteins are amongst major determinants. The genomic RNA of the Hepatitis C Virus is uncapped, non-polyadenylated and harbors a peculiar internal ribosome entry site (IRES) that binds the ribosome directly to the AUG codon. Thus, we have exploited the unique properties of the HCV IRES and other related IRESes (HCV-like) to study how translation initiation can be modulated by miRNAs on these elements. Here, we report that miRNA binding to the 3? UTR can stimulate translation of a reporter gene given that its expression is driven by an HCV-like IRES and that it lacks a poly(A) tail at its 3? extremity

    miRNA repression of translation in vitro takes place during 43S ribosomal scanning.

    Get PDF
    International audiencemicroRNAs (miRNAs) regulate gene expression at multiple levels by repressing translation, stimulating deadenylation and inducing the premature decay of target messenger RNAs (mRNAs). Although the mechanism by which miRNAs repress translation has been widely studied, the precise step targeted and the molecular insights of such repression are still evasive. Here, we have used our newly designed in vitro system, which allows to study miRNA effect on translation independently of deadenylation. By using specific inhibitors of various stages of protein synthesis, we first show that miRNAs target exclusively the early steps of translation with no effect on 60S ribosomal subunit joining, elongation or termination. Then, by using viral proteases and IRES-driven mRNA constructs, we found that translational inhibition takes place during 43S ribosomal scanning and requires both the poly(A) binding protein and eIF4G independently from their physical interaction

    A Dormant Internal Ribosome Entry Site Controls Translation of Feline Immunodeficiency Virus▿

    No full text
    The characterization of internal ribosome entry sites (IRESs) in virtually all lentiviruses prompted us to investigate the mechanism used by the feline immunodeficiency virus (FIV) to produce viral proteins. Various in vitro translation assays with mono- and bicistronic constructs revealed that translation of the FIV genomic RNA occurred both by a cap-dependent mechanism and by weak internal entry of the ribosomes. This weak IRES activity was confirmed in feline cells expressing bicistronic RNAs containing the FIV 5′ untranslated region (UTR). Surprisingly, infection of feline cells with FIV, but not human immunodeficiency virus type 1, resulted in a great increase in FIV translation. Moreover, a change in the cellular physiological condition provoked by heat stress resulted in the specific stimulation of expression driven by the FIV 5′ UTR while cap-dependent initiation was severely repressed. These results reveal the presence of a “dormant” IRES that becomes activated by viral infection and cellular stress

    Translation of intronless RNAs is strongly stimulated by the Epstein–Barr virus mRNA export factor EB2

    Get PDF
    International audienceThe Epstein-Barr virus protein (EB2) allows the nuclear export of a particular subset of early and late viral RNAs derived from intronless genes. EB2 is conserved among most herpesvirus members and its presence is essential for the production of infectious particles. Here we show that, besides its role as a nuclear export factor, EB2 strongly stimulates translation of unspliced mRNAs without affecting overall cellular translation. Interestingly, this effect can be reversed by the addition of an intron within the gene. The spliced mRNA is then efficiently exported and translated even in the absence of EB2. Moreover, we show that EB2 associates with translating ribosomes and increases the proportion of its target RNA in the polyribosomal fraction. Finally, testing of EB2 homolog proteins derived from EBV-related herpesviruses, shows that, even if they play similar roles within the replication cycle of their respective virus, their mechanisms of action are different
    corecore