3,509 research outputs found

    Experimental and Theoretical Investigation into the Effect of the Electron Velocity Distribution on Chaotic Oscillations in an Electron Beam under Virtual Cathode Formation Conditions

    Full text link
    The effect of the electron transverse and longitudinal velocity spread at the entrance to the interaction space on wide-band chaotic oscillations in intense multiple-velocity beams is studied theoretically and numerically under the conditions of formation of a virtual cathode. It is found that an increase in the electron velocity spread causes chaotization of virtual cathode oscillations. An insight into physical processes taking place in a virtual cathode multiple velocity beam is gained by numerical simulation. The chaotization of the oscillations is shown to be associated with additional electron structures, which were separated out by constructing charged particle distribution functions.Comment: 9 pages, 8 figure

    An action principle for Vasiliev's four-dimensional higher-spin gravity

    Full text link
    We provide Vasiliev's fully nonlinear equations of motion for bosonic gauge fields in four spacetime dimensions with an action principle. We first extend Vasiliev's original system with differential forms in degrees higher than one. We then derive the resulting duality-extended equations of motion from a variational principle based on a generalized Hamiltonian sigma-model action. The generalized Hamiltonian contains two types of interaction freedoms: One set of functions that appears in the Q-structure of the generalized curvatures of the odd forms in the duality-extended system; and another set depending on the Lagrange multipliers, encoding a generalized Poisson structure, i.e. a set of polyvector fields of ranks two or higher in target space. We find that at least one of the two sets of interaction-freedom functions must be linear in order to ensure gauge invariance. We discuss consistent truncations to the minimal Type A and B models (with only even spins), spectral flows on-shell and provide boundary conditions on fields and gauge parameters that are compatible with the variational principle and that make the duality-extended system equivalent, on shell, to Vasiliev's original system.Comment: 37 pages. References added, corrected typo

    Investigation of the Chaotic Dynamics of an Electron Beam with a Virtual Cathode in an External Magnetic Field

    Get PDF
    The effect of the strength of the focusing magnetic field on chaotic dynamic processes occurring inan electron beam with a virtual cathode, as well as on the processes whereby the structures form in the beamand interact with each other, is studied by means of two-dimensional numerical simulations based on solving a self-consistent set of Vlasov-Maxwell equations. It is shown that, as the focusing magnetic field is decreased,the dynamics of an electron beam with a virtual cathode becomes more complicated due to the formation andinteraction of spatio-temporal longitudinal and transverse structures in the interaction region of a vircator. The optimum efficiency of the interaction of an electron beam with the electromagnetic field of the vircator isachieved at a comparatively weak external magnetic field and is determined by the fundamentally two-dimensional nature of the motion of the beam electrons near the virtual cathode.Comment: 12 pages, 8 figure

    Complex of C₆₀ fullerene with doxorubicin as a promising agent in antitumor therapy

    Get PDF
    The main aim of this work was to evaluate the effect of doxorubicin in complex with C₆₀ fullerene (C₆₀ + Dox) on the growth and metastasis of Lewis lung carcinoma in mice and to perform a primary screening of the potential mechanisms of C₆₀ + Dox complex actio

    Complex of C₆₀ fullerene with doxorubicin as a promising agent in antitumor therapy

    Get PDF
    The main aim of this work was to evaluate the effect of doxorubicin in complex with C₆₀ fullerene (C₆₀ + Dox) on the growth and metastasis of Lewis lung carcinoma in mice and to perform a primary screening of the potential mechanisms of C₆₀ + Dox complex actio

    Theory of quantum radiation observed as sonoluminescence

    Get PDF
    Sonoluminescence is explained in terms of quantum radiation by moving interfaces between media of different polarizability. In a stationary dielectric the zero-point fluctuations of the electromagnetic field excite virtual two-photon states which become real under perturbation due to motion of the dielectric. The sonoluminescent bubble is modelled as an optically empty cavity in a homogeneous dielectric. The problem of the photon emission by a cavity of time-dependent radius is handled in a Hamiltonian formalism which is dealt with perturbatively up to first order in the velocity of the bubble surface over the speed of light. A parameter-dependence of the zero-order Hamiltonian in addition to the first-order perturbation calls for a new perturbative method combining standard perturbation theory with an adiabatic approximation. In this way the transition amplitude from the vacuum into a two-photon state is obtained, and expressions for the single-photon spectrum and the total energy radiated during one flash are given both in full and in the short-wavelengths approximation when the bubble is larger than the wavelengths of the emitted light. It is shown analytically that the spectral density has the same frequency-dependence as black-body radiation; this is purely an effect of correlated quantum fluctuations at zero temperature. The present theory clarifies a number of hitherto unsolved problems and suggests explanations for several more. Possible experiments that discriminate this from other theories of sonoluminescence are proposed.Comment: Latex file, 28 pages, postscript file with 3 figs. attache

    Asymptotic W-symmetries in three-dimensional higher-spin gauge theories

    Full text link
    We discuss how to systematically compute the asymptotic symmetry algebras of generic three-dimensional bosonic higher-spin gauge theories in backgrounds that are asymptotically AdS. We apply these techniques to a one-parameter family of higher-spin gauge theories that can be considered as large N limits of SL(N) x SL(N) Chern-Simons theories, and we provide a closed formula for the structure constants of the resulting infinite-dimensional non-linear W-algebras. Along the way we provide a closed formula for the structure constants of all classical W_N algebras. In both examples the higher-spin generators of the W-algebras are Virasoro primaries. We eventually discuss how to relate our basis to a non-primary quadratic basis that was previously discussed in literature.Comment: 61 page
    corecore