83 research outputs found

    Characterization of Multiblock (Segmented) Copolyurethane- Imides and Nanocomposites Based Thereof Using AFM, Nanotribology, and Nanoindentation Methods

    Get PDF
    This chapter reviews our results on the morphology, tribological, and local mechanical property investigations of new copoly(urethane-imide)s (coPUIs) and nanocomposites based thereof using atomic force microscopy (AFM) and nanoindentation (NI) methods. AFM in the contact mode of lateral forces revealed the presence of different contrast phases on the surface of synthesized films which depends on the chemical structure of monomers used. Single-walled carbon nanotubes (SWCNTs), carbon nanofibers, graphene, tungsten disulfide and tungsten diselenide were introduced into coPUI matrices. Dependencies of microhardness and modulus of elasticity on the depth of indentation have been obtained. It was found that for each synthesized coPUI, there is only one type of carbon nanomaterials that exerts the greatest influence on their characteristics. The improvement of mechanical properties is found to mainly depend on the nature of the polymer matrix and filler. Our results showed that effective methods for improving of tribological characteristics can be either modification by SWCNTs (up to 1 wt.%) or heating at 30°C. Synthesized coPUI films and nanocomposites are very promising materials and can be used as thermoplastic elastomers for tribological applications, and their physical-mechanical properties can be controlled both by temperature and by mechanical action

    Transport Properties of Thermoplastic R-BAPB Polyimide: Molecular Dynamics Simulations and Experiment

    No full text
    The present work evaluates the transport properties of thermoplastic R-BAPB polyimide based on 1,3-bis(3,3′,4,4′-dicarboxyphenoxy)benzene (dianhydride R) and 4,4′-bis(4-aminophenoxy)biphenyl (diamine BAPB). Both experimental studies and molecular dynamics simulations were applied to estimate the diffusion coefficients and solubilities of various gases, such as helium (He), oxygen (O2), nitrogen (N2), and methane (CH4). The validity of the results obtained was confirmed by studying the correlation of the experimental solubilities and diffusion coefficients of He, O2, and N2 in R-BAPB, with their critical temperatures and the effective sizes of the gas molecules, respectively. The solubilities obtained in the molecular dynamics simulations are in good quantitative agreement with the experimental data. A good qualitative relationship between the simulation results and the experimental data is also observed when comparing the diffusion coefficients of the gases. Analysis of the Robeson plots shows that R-BAPB has high selectivity for He, N2, and CO2 separation from CH4, which makes it a promising polymer for developing gas-separation membranes. From this point of view, the simulation models developed and validated in the present work may be put to effective use for further investigations into the transport properties of R-BAPB polyimide and nanocomposites based on it

    Development of a methodological approach for the computational investigation of the coolant flow in the process of the sodium cooled reactor cooldown

    Get PDF
    A methodological approach has been developed for the computational investigation of the thermal-hydraulic processes taking place in a sodium cooled fast neutron reactor based on a Russian computational fluid dynamics code, FlowVision. The approach takes into account the integral layout of the reactor primary circuit equipment and the peculiarities of heat exchange in the liquid metal coolant, and makes it possible to model, using well-defined simplifications, the heat and mass exchange in the process of the coolant flowing through the reactor core, and the reactor heat-exchange equipment. Specifically, the methodological approach can be used for justification of safety during the reactor cooldown, as well as for other computational studies which require simulation of the integral reactor core and heat-exchange equipment. The paper presents a brief overview of the methodological approaches developed earlier to study the liquid metal cooled reactor cooldown processes. General principles of these approaches, as well as their advantages and drawbacks have been identified. A three-dimensional computational model of an advanced reactor has been developed, including one heat-exchange loop (a fourth part of the reactor). It has been demonstrated that the FlowVision gap model can be applied to model the space between the reactor core fuel assemblies (interwrapper space), and a porous skeleton model can be used to model the reactor’s heat-exchange equipment. It has been shown that the developed methodological approach is applicable to solving problems of the coolant flow in different operating modes of liquid metal cooled reactor facilities

    Rheological and Mechanical Properties of Thermoplastic Crystallizable Polyimide-Based Nanocomposites Filled with Carbon Nanotubes: Computer Simulations and Experiments

    No full text
    Recently, a strong structural ordering of thermoplastic semi-crystalline polyimides near single-walled carbon nanotubes (SWCNTs) was found that can enhance their mechanical properties. In this study, a comparative analysis of the results of microsecond-scale all-atom computer simulations and experimental measurements of thermoplastic semi-crystalline polyimide R-BAPB synthesized on the basis of dianhydride R (1,3-bis-(3′,4-dicarboxyphenoxy) benzene) and diamine BAPB (4,4′-bis-(4″-aminophenoxy) biphenyl) near the SWCNTs on the rheological properties of nanocomposites was performed. We observe the viscosity increase in the SWCNT-filled R-BAPB in the melt state both in computer simulations and experiments. For the first time, it is proven by computer simulation that this viscosity change is related to the structural ordering of the R-BAPB in the vicinity of SWCNT but not to the formation of interchain linkage. Additionally, strong anisotropy of the rheological properties of the R-BAPB near the SWCNT surface was detected due to the polyimide chain orientation. The increase in the viscosity of the polymer in the viscous-flow state and an increase in the values of the mechanical characteristics (Young’s modulus and yield peak) of the SWCNT-R-BAPB nanocomposites in the glassy state are stronger in the directions along the ordering of polymer chains close to the carbon nanofiller surface. Thus, the new experimental data obtained on the R-BAPB-based nanocomposites filled with SWCNT, being extensively compared with simulation results, confirm the idea of the influence of macromolecular ordering near the carbon nanotube on the mechanical characteristics of the composite material

    Selective Destruction of Soluble Polyurethaneimide as Novel Approach for Fabrication of Insoluble Polyimide Films

    No full text
    Polymeric coatings and membranes with extended stability toward a wide range of organic solvents are practical for application in harsh environments; on the other hand, such stability makes their processing quite difficult. In this work, we propose a novel method for the fabrication of films based on non-soluble polymers. The film is made from the solution of block copolymer containing both soluble and insoluble blocks followed by selective decomposition of soluble blocks. To prove this concept, we synthesized copolymer [(imide)n-(polyurethane)]m, in which the imide blocks were combined with polyurethane blocks based on polycaprolactone. By selective hydrolysis of urethane blocks in the presence of acid, it was possible to obtain the insoluble polyimide film for the first time. It was shown that the combination of thermal and acid treatment allowed almost complete removal of urethane blocks from the initial copolymer chains. IR spectroscopy, TGA, DSC and DMA methods were used to study the evaluation of the structure and properties of polymeric material as a result of thermal oxidation and hydrolysis by acid. It was shown that the polymeric films obtained by controlled decomposition were not soluble in aprotic solvent, such as dimethylformamide, n-methylpyrrolidone and dimethyl sulfoxide, and showed very close similarity to the homopolymer consisting of the same imide monomer, poly-(4,4′oxydiphenylene)pyromellitimide, confirming the feasibility of the proposed concept and its perspectives for fabrication of organic solvent-resistant membranes

    The Characteristics of Ubiquitous and Unique Leptospira Strains from the Collection of Russian Centre for Leptospirosis

    No full text
    Background and Aim. Leptospira, the causal agent of leptospirosis, has been isolated from the environment, patients, and wide spectrum of animals in Russia. However, the genetic diversity of Leptospira in natural and anthropurgic foci was not clearly defined. Methods. The recent MLST scheme was used for the analysis of seven pathogenic species. 454 pyrosequencing technology was the base of the whole genome sequencing (WGS). Results. The most wide spread and prevalent Leptospira species in Russia were L. interrogans, L. kirschneri, and L. borgpetersenii. Five STs, common for Russian strains: 37, 17, 199, 110, and 146, were identified as having a longtime and ubiquitous distribution in various geographic areas. Unexpected properties were revealed for the environmental Leptospira strain Bairam-Ali. WGS of this strain genome suggested that it combined the features of the pathogenic and nonpathogenic strains and may be a reservoir of the natural resistance genes. Results of the comparative analysis of rrs and rpoB genes and MLST loci for different Leptospira species strains and phenotypic and serological properties of the strain Bairam-Ali suggested that it represented separate Leptospira species. Conclusions. Thus, the natural and anthropurgic foci supported ubiquitous Leptospira species and the pool of genes important for bacterial adaptivity to various conditions

    Morphological Analysis of Poly(4,4′-oxydiphenylene-pyromellitimide)-Based Organic Solvent Nanofiltration Membranes Formed by the Solution Method

    No full text
    Poly-(4,4′-oxydiphenylene) pyromellitimide or Kapton is the most widely available polyimide with high chemical and thermal stability. It has great prospects for use as a membrane material for filtering organic media due to its complete insolubility. However, the formation of membranes based on it, at the moment, is an unsolved problem. The study corresponds to the rediscovery of poly(4,4′-oxydiphenylene–pyromellitimide)-based soluble copoly(urethane-imides) as membrane polymers of a new generation. It is shown that the physical structure of PUI films prepared by the solution method becomes porous after the removal of urethane blocks from the polymer, and the pore size varies depending on the conditions of thermolysis and subsequent hydrolysis of the membrane polymer. The film annealed at 170 °C with a low destruction degree of polycaprolactam blocks exhibits the properties of a nanofiltration membrane. It is stable in the aprotic solvent DMF and has a Remasol Brilliant Blue R retention coefficient of 95%. After the hydrolysis of thermally treated films in acidic media, ultrafiltration size 66–82 nm pores appear, which leads to an increase in the permeate flow by more than two orders of magnitude. This circumstance provides opportunities for controlling the membrane polymer structure for further optimization of the performance characteristics of filtration membranes based on it. Thus, we proposed a new preparation method of ultra- and nanofiltration membranes based on poly(4,4′-oxydiphenylene–pyromellitimide) that are stable in aprotic solvents

    Measurement of CP asymmetries in D(s)+ηπ+ {D}_{(s)}^{+}\to \eta {\pi}^{+} and D(s)+ηπ+ {D}_{(s)}^{+}\to {\eta}^{\prime }{\pi}^{+} decays

    No full text
    Searches for CP violation in the decays D(s)+ηπ+ {D}_{(s)}^{+}\to \eta {\pi}^{+} and D(s)+ηπ+ {D}_{(s)}^{+}\to {\eta}^{\prime }{\pi}^{+} are performed using pp collision data corresponding to 6 fb1^{−1} of integrated luminosity collected by the LHCb experiment. The calibration channels D(s)+ϕπ+ {D}_{(s)}^{+}\to \phi {\pi}^{+} are used to remove production and detection asymmetries. The resulting CP-violating asymmetries areACP=(D+ηπ+)=(0.34±0.66±0.16±0.05)%,ACP=(Ds+ηπ+)=(0.32±0.51±0.12)%,ACP=(D+ηπ+)=(0.49±0.18±0.06±0.05)%,ACP=(Ds+ηπ+)=(0.01±0.12±0.08)%, {\displaystyle \begin{array}{l}{\mathcal{A}}^{CP}=\left({D}^{+}\to \eta {\pi}^{+}\right)=\left(0.34\pm 0.66\pm 0.16\pm 0.05\right)\%,\\ {}{\mathcal{A}}^{CP}=\left({D}_s^{+}\to \eta {\pi}^{+}\right)=\left(0.32\pm 0.51\pm 0.12\right)\%,\\ {}\begin{array}{l}{\mathcal{A}}^{CP}=\left({D}^{+}\to {\eta}^{\prime }{\pi}^{+}\right)=\left(0.49\pm 0.18\pm 0.06\pm 0.05\right)\%,\\ {}{\mathcal{A}}^{CP}=\left({D}_s^{+}\to {\eta}^{\prime }{\pi}^{+}\right)=\left(0.01\pm 0.12\pm 0.08\right)\%,\end{array}\end{array}} where the first uncertainty is statistical, the second is systematic and the third, relevant for the D+^{+} channels, is due to the uncertainty on ACP=(D+ϕπ+) {\mathcal{A}}^{CP}=\left({D}^{+}\to \phi {\pi}^{+}\right) . These measurements, currently the most precise for three of the four channels considered, are consistent with the absence of CP violation. A combination of these results with previous LHCb measurements is presented.[graphic not available: see fulltext]Searches for CPCP violation in the decays D(s)+ηπ+D^+_{(s)}\rightarrow \eta \pi^+ and D(s)+ηπ+D^+_{(s)}\rightarrow \eta^{\prime} \pi^+ are performed using pppp collision data corresponding to 6 fb1^{-1} of integrated luminosity collected by the LHCb experiment. The calibration channels D(s)+ϕπ+D^+_{(s)}\rightarrow \phi \pi^+ are used to remove production and detection asymmetries. The resulting CPCP-violating asymmetries are ACP(D+ηπ+)=(0.34±0.66±0.16±0.05)%A^{CP}(D^+ \rightarrow \eta \pi^+) = (0.34 \pm 0.66 \pm 0.16 \pm 0.05)\%, ACP(Ds+ηπ+)=(0.32±0.51±0.12)%A^{CP}(D^+_s \rightarrow \eta \pi^+) = (0.32 \pm 0.51 \pm 0.12)\%, ACP(D+ηπ+)=(0.49±0.18±0.06±0.05)%A^{CP}(D^+ \rightarrow \eta^{\prime} \pi^+) = (0.49 \pm 0.18 \pm 0.06 \pm 0.05)\%, ACP(Ds+ηπ+)=(0.01±0.12±0.08)%A^{CP}(D^+_s \rightarrow \eta^{\prime} \pi^+) = (0.01 \pm 0.12 \pm 0.08)\%, where the first uncertainty is statistical, the second is systematic and the third, relevant for the D+D^+ channels, is due to the uncertainty on ACP(D+ϕπ+)A^{CP}(D^+ \to \phi \pi^+). These measurements, currently the most precise for three of the four channels considered, are consistent with the absence of CPCP violation. A combination of these results with previous LHCb measurements is presented

    Evidence of a J/ψΛJ/\psi\Lambda structure and observation of excited Ξ\Xi^- states in the ΞbJ/ψΛK\Xi^-_b \to J/\psi\Lambda K^- decay

    No full text
    First evidence of a structure in the J/ψΛJ/\psi{\Lambda} invariant mass distribution is obtained from an amplitude analysis of ΞbJ/ψΛK\Xi_b^-{\rightarrow}J/\psi{\Lambda}K^- decays. The observed structure is consistent with being due to a charmonium pentaquark with strangeness with a significance of 3.1σ3.1\sigma including systematic uncertainties and look-elsewhere effect. Its mass and width are determined to be 4458.8±2.91.1+4.74458.8\pm2.9^{+4.7}_{-1.1} MeV and 17.3±6.55.7+8.017.3\pm6.5^{+8.0}_{-5.7} MeV, respectively, where the quoted uncertainties are statistical and systematic. The structure is also consistent with being due to two resonances. In addition, the narrow excited Ξ\Xi^- states, Ξ(1690)\Xi(1690)^- and Ξ(1820)\Xi(1820)^-, are seen for the first time in a Ξb\Xi^-_b decay, and their masses and widths are measured with improved precision. The analysis is performed using pppp collision data corresponding to a total integrated luminosity of 9 fb1^{-1}, collected with the LHCb experiment at centre-of-mass energies of 7, 8 and 13 TeV
    corecore