32 research outputs found

    Development and Function of Immune Cells in an Adolescent Patient with a Deficiency in the Interleukin-10 Receptor

    Get PDF
    OBJECTIVE:: Monogenic defects in the interleukin-10 (IL-10) pathway are extremely rare and cause infantile-onset inflammatory bowel disease (IBD)-like pathology. Understanding how immune responses are dysregulated in monogenic IBD-like diseases can provide valuable insight in “classical” IBD pathogenesis. Here, we studied long-term immune cell development and function in an adolescent IL-10 receptor (IL10RA)-deficient patient who presented in infancy with severe colitis and fistulizing perianal disease and is currently treated with immune suppressants. METHODS:: Biomaterial was collected from the IL10RA-deficient patient, pediatric IBD patients and healthy controls. The frequency and phenotype of immune cells were determined in peripheral blood and intestinal biopsies by flow cytometry and immunohistochemistry. Functional changes in monocyte-derived dendritic cells and T cells were assessed by in vitro activation assays. RESULTS:: The IL10RA-deficient immune system developed normally with respect to numbers and phenotype of circulating immune cells. Despite normal co-stimulatory molecule expression, bacterial lipopolysaccharide-stimulated monocyte-derived dendritic cells from the IL10RA-deficient patient released increased amounts of TNFα compared to healthy controls. Upon T-cell receptor ligation, IL10RA-deficient peripheral blood mononuclear cells released increased amounts of T cell cytokines IFNÎł and IL-17 agreeing with high numbers of T-bet and IL-17 cells in intestinal biopsies taken at disease onset. In vitro, the immunosuppressive drug thalidomide used to treat the patient decreased peripheral blood mononuclear cell-derived TNFα production. CONCLUSIONS:: With time and during immunosuppressive treatment the IL10RA- deficient immune system develops relatively normally. Upon activation, IL-10 is crucial for controlling excessive inflammatory cytokine release by dendritic cells and preventing IFNÎł and IL-17-mediated T-cell responses

    Activation of NF-ÎșB driven inflammatory programs in mesenchymal elements attenuates hematopoiesis in low-risk myelodysplastic syndromes

    Get PDF
    Activation of NF-ÎșB signaling in mesenchymal cells is common in LR-MDS.Activation of NF-ÎșB in mesenchymal cells leads to transcriptional overexpression of inflammatory factors including negative regulators of hematopoiesis.Activation of NF-ÎșB attenuates HSPC numbers and function ex vivo

    Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage

    Get PDF
    Disruption of the intestinal epithelial barrier allows bacterial translocation and predisposes to destructive inflammation. To ensure proper barrier composition, crypt-residing stem cells continuously proliferate and replenish all intestinal epithelial cells within days. As a consequence of this high mitotic activity, mucosal surfaces are frequently targeted by anticancer therapies, leading to dose-limiting side effects. The cellular mechan

    Alcohol Facilitates CD1d Loading, Subsequent Activation of NKT Cells, and Reduces the Incidence of Diabetes in NOD Mice

    Get PDF
    Background: Ethanol ('alcohol') is a partly hydrophobic detergent that may affect the accessibility of glycolipids thereby influencing immunological effects of these molecules. Methods: The study included cellular in vitro tests using α-galactosylceramide (αGalCer), and in vivo NOD mice experiments detecting diabetes incidence and performing behavioural and bacterial analyses. Results: Alcohol in concentrations from 0.6% to 2.5% increased IL-2 production from NKT cells stimulated with αGalCer by 60% (p<0.05). CD1d expressed on HeLa cells contained significantly increasing amounts of αGalCer with increasing concentrations of alcohol, suggesting that alcohol facilitated the passive loading of αGalCer to CD1d. NOD mice were found to tolerate 5% ethanol in their drinking water without signs of impairment in liver function. Giving this treatment, the diabetes incidence declined significantly. Higher numbers of CD3+CD49b+ NKT cells were found in spleen and liver of the alcohol treated compared to the control mice (p<0.05), whereas the amount of CD4+Foxp3+ regulator T cells did not differ. Increased concentrations of IFN-γ were detected in 24-hour blood samples of alcohol treated mice. Behavioural studies showed no change in attitude of the ethanol-consuming mice, and bacterial composition of caecum samples was not affected by alcohol, disqualifying these as protective mechanisms. Conclusion: Alcohol facilitates the uptake of glycolipids and the stimulation of NKT cells, which are known to counteract Type 1 diabetes development. We propose that this is the acting mechanism by which treatment with alcohol reduces the incidence of diabetes in NOD mice. This is corroborated by epidemiology showing beneficial effect of alcohol to reduce the severity of atherosclerosis and related diseases

    Alterations in Epithelial and Mesenchymal Intestinal Gene Expression During Doxorubicin-Induced Mucositis in Mice

    Get PDF
    In the current study we aimed to gain insight into epithelial-mesenchymal cross-talk and progenitor compartment modulation during doxorubicin (DOX)-induced mucositis in mice. Intestinal segments were collected on various days after DOX treatment. DOX-induced damage at day 1–2 was characterized by increased epithelial proliferation and apoptosis and a decrease in the expression of epithelial differentiation markers. Concurrently, T-cell factor-4 (TCF4) levels increased and the epithelial differentiation enhancing factor, bone morphogenic protein-4 (BMP4), decreased. During severe damage (day 3), BMP4 levels were significantly increased, which inversely correlated with epithelial proliferation. At the same time, the expression of the epithelial differentiation markers was increasing again. At day 7, BMP4 levels were down-regulated, while the levels of the epithelial differentiation markers and TCF4 were normalized again. These data suggest that in response to DOX-induced damage, BMP4 and TCF4 are modulated in such a way that homeostasis of the progenitor compartment is partly preserved

    Endogenous secretory leukocyte protease inhibitor inhibits microbial-induced monocyte activation

    Get PDF
    In the intestine, epithelial factors condition incoming immune cells including monocytes to adapt their threshold of activation and prevent undesired inflammation. Colonic epithelial cells express Secretory Leukocyte Protease Inhibitor (SLPI), an inhibitor of NF kappa light chain enhancer of activated B cells (NF-ÎșB) that mediates epithelial hyporesponsiveness to microbial stimuli. Uptake of extracellular SLPI by monocytes has been proposed to inhibit monocyte activation. We questioned whether monocytes can produce SLPI and whether endogenous SLPI can inhibit monocyte activation. We demonstrate that human THP-1 monocytic cells produce SLPI and that CD68+ SLPI-producing cells can be detected in human intestinal lamina propria. Knockdown of SLPI in human THP-1 cells significantly increased NF-ÎșB activation and subsequent C-X-C motif chemokine ligand 8 (CXCL8) and TNF-α production in response to microbial stimulation. Reconstitution of SLPI-deficient cells with either full-length SLPI or SLPI lacking its signal peptide rescued inhibition of NF-ÎșB activation and cytokine production, demonstrating that endogenous SLPI inhibits monocytic cell activation. Unexpectedly, exogenous SLPI did not inhibit CXCL8 or TNF-α production, despite efficient uptake. Our data argue that endogenous SLPI can regulate the threshold of activation in monocytes, thereby preventing activation by commensal bacteria in mucosal tissues

    T-cell regulation of neutrophil infiltrate at the early stages of a murine colitis model

    No full text
    Background: T-cells are a main target for antiinflammatory drugs in inflammatory bowel disease. As the innate immune system is also implicated in the pathogenesis of these diseases, T-cell suppressors may not only inhibit T-cell-dependent production of proinflammatory mediators but also affect innate immune cell function. Specifically, these drugs may impair innate immune cell recruitment and activation through inhibition of T-cells or act independent of T-cell modulation. We explored the extent of immune modulation by the T-cell inhibitor tacrolimus in a murine colitis model. Methods: We assessed the effects of tacrolimus on trinitro-benzene sulphonic acid (TNBS) colitis in wildtype and Rag2-deficient mice. The severity of colitis was assessed by means of histological scores and weight loss. We further characterized the inflammation using immunohistochemistry and by analysis of isolated intestinal leukocytes at various stages of disease. Results: Tacrolimus-treated wildtype mice were less sensitive to colitis and had fewer activated T-cells. Inhibition of T-cell function was associated with strongly diminished recruitment of infiltrating neutrophils in the colon at the early stages of this model. In agreement, immunohistochemistry demonstrated that tacrolimus inhibited production of the neutrophil chemoattractants CXCL I and CXCL2. Rag2-deficient mice displayed an enhanced baseline level of lamina propria neutrophils that was moderately increased in TNBS colitis and remained unaffected by tacrolimus. Conclusions: Both the innate and the adaptive mucosal immune system contribute to TNBS colitis. Tacrolimus suppresses colitis directly through inhibition of T-cell activation and by suppression of T-cell-mediated recruitment of neutrophils
    corecore