634 research outputs found

    Social Networking in Academic Libraries: The Possibilities and the Concerns

    Get PDF
    The goal of this article is to examine the use of the major social networking tools in academic libraries in the United States. Since college students are heavy users of social networking, such efforts provide academic libraries with outreach possibilities to students who do not use the physical library. The paper also examines the concerns about their use both from students and within the academic library

    A Geographical Location Model for Targeted Implementation of Lure-and-Kill Strategies Against Disease-Transmitting Mosquitoes in Rural Areas

    Get PDF
    Outdoor devices for luring and killing disease-transmitting mosquitoes have been proposed as potential com- plementary interventions alongside existing intra-domiciliary methods namely insecticide treated nets and house spraying with residual insecticides. To enhance effectiveness of such outdoor interventions, it is essential to optimally locate them in such a way that they target most of the outdoor mosquitoes. Using odour-baited lure and kill stations (OBS) as an example, we describe a map model derived from: 1) com-munity participatory mapping conducted to identify mosquito breeding habitats, 2) entomological field studies conducted to estimate outdoor mosquito densities and to determine safe distances of the OBS from human dwellings, and 3) field surveys conducted to map households, roads, outdoor human aggregations and landmarks. The resulting data were combined in a Ge- ographical Information Systems (GIS) environment and analysed to determine optimal locations for the OBS. Separately, a GIS-interpolated map produced by asking community members to rank different zones of the study area and show where they expected to find most mosquitoes, was visually compared to another map interpolated from the entomological survey of outdoor mosquito densities. An easy-to-interpret suitability map showing optimal sites for placing OBS was produced, which clearly depicted areas least suitable and areas most suitable for locating the devices. Comparative visual interpretation of maps derived from interpolating the community knowledge and entomological data revealed major similarities between the two maps. Using distribution patterns of human and mosquito populations as well as characteristics of candidate outdoor interventions, it is possible to readily determine suitable areas for targeted positioning of the interventions, thus improve effectiveness. This study also highlights possibilities of relying on community knowledge to approximate areas where mosquitoes are most abundant and where to locate outdoor complementary interventions such as odour-baited lure and kill stations for controlling disease-transmitting mosquitoes.\u

    A tale of two sites: how inflammation can reshape the microbiomes of the gut and lungs

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141495/1/jlb0943.pd

    Outdoor Mosquito Control Using Odour-Baited Devices: Development and Evaluation of a Potential New Strategy to Complement Indoor Malaria Prevention Methods

    Get PDF
    A considerable effort is currently underway to develop a malaria vaccine based on live Plasmodium falciparum sporozoites. The first requisite of a sporozoite vaccine is the guarantee of parasite arrest prior to the onset of the pathogenic blood stage. Immunisation with genetically attenuated parasites (GAP) that arrest in the liver forms a promising approach. Work in this thesis describes the development and characterisation of a P. berghei Δb9Δslarp GAP that fully arrests in the liver. Immunisation of multiple mouse strains with low numbers of Δb9Δslarp GAP resulted in sterile protection. The Δb9Δslarp GAP is there- fore the leading GAP vaccine candidate. Work in this the- sis further describes the effect of varying the parameters of sporozoite inoculation on parasite liver load. These findings provide a rationale for the design of clinical trials aimed at the administration of live attenuated P. falciparum sporozoites

    COVID‐19: The Uninvited Guest in the Intensive Care Unit — Implications for Pharmacotherapy

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155543/1/phar2394.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155543/2/phar2394_am.pd

    Attracting, trapping and killing disease-transmitting mosquitoes using odor-baited stations - The Ifakara Odor-Baited Stations

    Get PDF
    BACKGROUND: To accelerate efforts towards control and possibly elimination of mosquito-borne diseases such as malaria and lymphatic filariasis, optimally located outdoor interventions could be used to complement existing intradomicilliary vector control methods such as house spraying with insecticides and insecticidal bednets. METHODS: We describe a new odor-baited station for trapping, contaminating and killing disease-transmitting mosquitoes. This device, named the 'Ifakara Odor-baited Station' (Ifakara OBS), is a 4 m3 hut-shaped canvas box with seven openings, two of which may be fitted with interception traps to catch exiting mosquitoes. It is baited with synthetic human odors and may be augmented with contaminants including toxic insecticides or biological agents. RESULTS: In field trials where panels of fabric were soaked in 1% pirimiphos-methyl solution and suspended inside the Ifakara OBS, at least 73.6% of Anopheles arabiensis, 78.7% of Culex and 60% of Mansonia mosquitoes sampled while exiting the OBS, died within 24 hours. When used simply as a trap and evaluated against two existing outdoor traps, Ifakara Tent trap and Mosquito Magnet-X(R), the OBS proved more efficacious than the Ifakara Tent trap in catching all mosquito species found (P < 0.001). Compared to the Mosquito Magnet-X(R), it was equally efficacious in catching An. arabiensis (P = 0.969), but was less efficacious against Culex (P < 0.001) or Mansonia species (P < 0.001). CONCLUSION: The Ifakara OBS is efficacious against disease-carrying mosquitoes including the malaria vector, An. arabiensis and Culicine vectors of filarial worms and arboviruses. It can be used simultaneously as a trap and as a contamination or killing station, meaning most mosquitoes which escape trapping would leave when already contaminated and die shortly afterwards. This technique has potential to complement current vector control methods, by targeting mosquitoes in places other than human dwellings, but its effectiveness in the field will require cheap, long-lasting and easy-to-use mosquito lures

    Consistent Quantum Counterfactuals

    Get PDF
    An analysis using classical stochastic processes is used to construct a consistent system of quantum counterfactual reasoning. When applied to a counterfactual version of Hardy's paradox, it shows that the probabilistic character of quantum reasoning together with the ``one framework'' rule prevents a logical contradiction, and there is no evidence for any mysterious nonlocal influences. Counterfactual reasoning can support a realistic interpretation of standard quantum theory (measurements reveal what is actually there) under appropriate circumstances.Comment: Minor modifications to make it agree with published version. Latex 8 pages, 2 figure

    An extra-domiciliary method of delivering entomopathogenic fungus, Metharizium anisopliae IP 46 for controlling adult populations of the malaria vector, Anopheles arabiensis

    Get PDF
    Fungal biopesticides have the potential to significantly reduce densities of malaria vectors as well as associated malaria transmission. In previous field trials, entomopathogenic fungus was delivered from within human dwellings, where its efficacy was limited by low infection rates of target mosquitoes, high costs of spraying fungus inside houses, and potential public health concerns associated with introducing fungal conidia inside houses. Here we have demonstrated that Metarhizium anisopliae IP 46, delivered within an extra-domiciliary odor-baited station (OBS), can infect and slowly-kill a high proportion of the wild adult malaria vector, Anopheles arabiensis which entered and exited the OBS. This study, carried out in rural Tanzania, showed that by using a concentration of 3.9 × 1010 conidia/m2, more than 95% of mosquitoes that flew in and out of the OBS died within 14 days post-exposure. At least 86% infection of mosquito cadavers was recorded with a significant reduction in the probability of daily survival of exposed An. arabiensis in both treatments tested: low quantity of conidia (eave baffles plus one cotton panel; HR = 2.65, P < 0.0001) and high quantity of conidia (eave baffles plus two cotton panels; HR = 2.32, P < 0.0001). We conclude that high infection rates of entomopathogenic fungi on wild malaria vectors and possibly significant disruption of malaria transmission can be achieved if the fungus is delivered using optimally located outdoor odor-baited stations
    • …
    corecore