203 research outputs found

    Intermittent preventive treatment of malaria provides substantial protection against malaria in children already protected by an insecticide-treated bednet in Mali: a randomised, double-blind, placebo-controlled trial.

    Get PDF
    BACKGROUND: Previous studies have shown that in areas of seasonal malaria transmission, intermittent preventive treatment of malaria in children (IPTc), targeting the transmission season, reduces the incidence of clinical malaria. However, these studies were conducted in communities with low coverage with insecticide-treated nets (ITNs). Whether IPTc provides additional protection to children sleeping under an ITN has not been established. METHODS AND FINDINGS: To assess whether IPTc provides additional protection to children sleeping under an ITN, we conducted a randomised, double-blind, placebo-controlled trial of IPTc with sulphadoxine pyrimethamine (SP) plus amodiaquine (AQ) in three localities in Kati, Mali. After screening, eligible children aged 3-59 mo were given a long-lasting insecticide-treated net (LLIN) and randomised to receive three rounds of active drugs or placebos. Treatments were administered under observation at monthly intervals during the high malaria transmission season in August, September, and October 2008. Adverse events were monitored immediately after the administration of each course of IPTc and throughout the follow-up period. The primary endpoint was clinical episodes of malaria recorded through passive surveillance by study clinicians available at all times during the follow-up. Cross-sectional surveys were conducted in 150 randomly selected children weekly and in all children at the end of the malaria transmission season to assess usage of ITNs and the impact of IPTc on the prevalence of malaria, anaemia, and malnutrition. Cox regression was used to compare incidence rates between intervention and control arms. The effects of IPTc on the prevalence of malaria infection and anaemia were estimated using logistic regression. 3,065 children were screened and 3,017 (1,508 in the control and 1,509 in the intervention arm) were enrolled in the study. 1,485 children (98.5%) in the control arm and 1,481 (98.1%) in the intervention arm completed follow-up. During the intervention period, the proportion of children reported to have slept under an ITN was 99.7% in the control and 99.3% in intervention arm (p = 0.45). A total of 672 episodes of clinical malaria defined as fever or a history of fever and the presence of at least 5,000 asexual forms of Plasmodium falciparum per microlitre (incidence rate of 1.90; 95% confidence interval [CI] 1.76-2.05 episodes per person year) were observed in the control arm versus 126 (incidence rate of 0.34; 95% CI 0.29-0.41 episodes per person year) in the intervention arm, indicating a protective effect (PE) of 82% (95% CI 78%-85%) (p<0.001) on the primary endpoint. There were 15 episodes of severe malaria in children in the control arm compared to two in children in the intervention group giving a PE of 87% (95% CI 42%-99%) (p = 0.001). IPTc reduced the prevalence of malaria infection by 85% (95% CI 73%-92%) (p<0.001) during the intervention period and by 46% (95% CI 31%-68%) (p<0.001) at the end of the intervention period. The prevalence of moderate anaemia (haemoglobin [Hb] <8 g/dl) was reduced by 47% (95% CI 15%-67%) (p<0.007) at the end of intervention period. The frequencies of adverse events were similar between the two arms. There was no drug-related serious adverse event. CONCLUSIONS: IPTc given during the malaria transmission season provided substantial protection against clinical episodes of malaria, malaria infection, and anaemia in children using an LLIN. SP+AQ was safe and well tolerated. These findings indicate that IPTc could make a valuable contribution to malaria control in areas of seasonal malaria transmission alongside other interventions. TRIAL REGISTRATION: ClinicalTrials.gov NCT00738946. Please see later in the article for the Editors' Summary

    Seasonal use case for the RTS,S/AS01 malaria vaccine: a mathematical modelling study

    Get PDF
    BACKGROUND: A 2021 clinical trial of seasonal RTS,S/AS01E (RTS,S) vaccination showed that vaccination was non-inferior to seasonal malaria chemoprevention (SMC) in preventing clinical malaria. The combination of these two interventions provided significant additional protection against clinical and severe malaria outcomes. Projections of the effect of this novel approach to RTS,S vaccination in seasonal transmission settings for extended timeframes and across a range of epidemiological settings are needed to inform policy recommendations. METHODS: We used a mathematical, individual-based model of malaria transmission that was fitted to data on the relationship between entomological inoculation rate and parasite prevalence, clinical disease, severe disease, and deaths from multiple sites across Africa. The model was validated with results from a phase 3b trial assessing the effect of SV-RTS,S in Mali and Burkina Faso. We developed three intervention efficacy models with varying degrees and durations of protection for our population-level modelling analysis to assess the potential effect of an RTS,S vaccination schedule based on age (doses were delivered to children aged 6 months, 7·5 months, and 9 months for the first three doses, and at 27 months of age for the fourth dose) or season (children aged 5-17 months at the time of first vaccination received the first three doses in the 3 months preceding the transmission season, with any subsequent doses up to five doses delivered annually) in seasonal transmission settings both in the absence and presence of SMC with sulfadoxine-pyrimethamine plus amodiaquine. This is modelled as a full therapeutic course delivered every month for four or five months of the peak in transmission season. Estimates of cases and deaths averted in a population of 100 000 children aged 0-5 years were calculated over a 15-year time period for a range of levels of malaria transmission intensity (Plasmodium falciparum parasite prevalence in children aged 2-10 years between 10% and 65%) and over two west Africa seasonality archetypes. FINDINGS: Seasonally targeting RTS,S resulted in greater absolute reductions in malaria cases and deaths compared with an age-based strategy, averting an additional 14 000-47 000 cases per 100 000 children aged 5 years and younger over 15 years, dependent on seasonality and transmission intensity. We predicted that adding seasonally targeted RTS,S to SMC would reduce clinical incidence by up to an additional 42 000-67 000 cases per 100 000 children aged 5 years and younger over 15 years compared with SMC alone. Transmission season duration was a key determinant of intervention effect, with the advantage of adding RTS,S to SMC predicted to be smaller with shorter transmission seasons. INTERPRETATION: RTS,S vaccination in seasonal settings could be a valuable additional tool to existing interventions, with seasonal delivery maximising the effect relative to an age-based approach. Decisions surrounding deployment strategies of RTS,S in such settings will need to consider the local and regional variations in seasonality, current rates of other interventions, and potential achievable RTS,S coverage. FUNDING: UK Medical Research Council, UK Foreign Commonwealth & Development Office, The Wellcome Trust, and The Royal society

    Pityriasis Rosé de Gibert révélant une Hépatite virale B

    Get PDF
    Le pityriasis rosé, décrit par Gibert en 1860, est une dermatose fréquente, bénigne, transitoire, et d’étiologie inconnue qui atteint surtout les adultes jeunes. On pense qu'il s'agit d'une affection virale, mais sans argument bien probant. Nous rapportons un cas de Pityriasis Rosé de Gibert (PRG) révélant une hépatite virale B. Observation : Il s’agissait d’un adulte de 47 ans originaire de Diago (Commune de Kati), sans antécédents médicaux et chirurgicaux connus, qui consulte pour des macules rosées disséminées sur tout le tronc associées à du prurit chez qui le diagnostic de PRG a été retenu. Il a bénéficié de la vaseline à l’urée 5% et de la Mequitazine 10mg comme traitement. Devant la persistance du prurit un bilan biologique à la recherche d’une étiologie fut demandé et cela a conduit au diagnostic d’une infection par le virus de l’hépatite B. Conclusion : Cette observation devrait conduire les dermatologues à proposer systématiquement la recherche d’une infection virale à l’hépatite B devant des PRG très prurigineux et résistants aux traitements habituels

    Anaemia in a phase 2 study of a blood stage falciparum malaria vaccine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A Phase 1-2b study of the blood stage malaria vaccine AMA1-C1/Alhydrogel was conducted in 336 children in Donéguébougou and Bancoumana, Mali. In the Phase 2 portion of the study (n = 300), no impact on parasite density or clinical malaria was seen; however, children who received the study vaccine had a higher frequency of anaemia (defined as haemoglobin < 8.5 g/dL) compared to those who received the comparator vaccine (Hiberix). This effect was one of many tested and was not significant after adjusting for multiple comparisons.</p> <p>Methods</p> <p>To further investigate the possible impact of vaccination on anaemia, additional analyses were conducted including patients from the Phase 1 portion of the study and controlling for baseline haemoglobin, haemoglobin types S or C, alpha-thalassaemia, G6PD deficiency, and age. A multiplicative intensity model was used, which generalizes Cox regression to allow for multiple events. Frailty effects for each subject were used to account for correlation of multiple anaemia events within the same subject. Intensity rates were calculated with reference to calendar time instead of time after randomization in order to account for staggered enrollment and seasonal effects of malaria incidence. Associations of anaemia with anti-AMA1 antibody were further explored using a similar analysis.</p> <p>Results</p> <p>A strong effect of vaccine on the incidence of anaemia (risk ratio [AMA1-C1 to comparator (Hiberix)]= 2.01, 95% confidence interval [1.26,3.20]) was demonstrated even after adjusting for baseline haemoglobin, haemoglobinopathies, and age, and using more sophisticated statistical models. Anti-AMA1 antibody levels were not associated with this effect.</p> <p>Conclusions</p> <p>While these additional analyses show a robust effect of vaccination on anaemia, this is an intensive exploration of secondary results and should, therefore, be interpreted with caution. Possible mechanisms of the apparent adverse effect on haemoglobin of vaccination with AMA1-C1/Alhydrogel and implications for blood stage vaccine development are discussed. The potential impact on malaria-associated anaemia should be closely evaluated in clinical trials of AMA1 and other blood stage vaccines in malaria-exposed populations.</p

    Serological Evaluation of Onchocerciasis and Lymphatic Filariasis Elimination in the Bakoye and Falémé foci, Mali

    Get PDF
    In Mali, ivermectin-based onchocerciasis elimination from the Bakoye and Falémé foci, reported in 2009–2012, was a beacon leading to policy shifting from morbidity control to elimination of transmission (EOT). These foci are also endemic for lymphatic filariasis (LF). In 2007–2016 mass ivermectin plus albendazole administration was implemented. We report Ov16 (onchocerciasis) and Wb123 (LF) seroprevalence after 24–25 years of treatment to evaluate if onchocerciasis EOT and LF elimination as a public health problem (EPHP) have been achieved

    Differential Scanning Fluorimetry provides high throughput data on silk protein transitions

    Get PDF
    Here we present a set of measurements using Differential Scanning Fluorimetry (DSF) as an inexpensive, high throughput screening method to investigate the folding of silk protein molecules as they abandon their first native melt conformation, dehydrate and denature into their final solid filament conformation. Our first data and analyses comparing silks from spiders, mulberry and wild silkworms as well as reconstituted ‘silk’ fibroin show that DSF can provide valuable insights into details of silk denaturation processes that might be active during spinning. We conclude that this technique and technology offers a powerful and novel tool to analyse silk protein transitions in detail by allowing many changes to the silk solutions to be tested rapidly with microliter scale sample sizes. Such transition mechanisms will lead to important generic insights into the folding patterns not only of silks but also of other fibrous protein (bio)polymers

    Efficacy and safety of a fixed dose artesunate-sulphamethoxypyrazine-pyrimethamine compared to artemether-lumefantrine for the treatment of uncomplicated falciparum malaria across Africa: a randomized multi-centre trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The efficacy of artemisinin-based combination therapy has already been demonstrated in a number of studies all over the world, and some of them can be regarded as comparably effective. Ease of administration of anti-malarial treatments with shorter courses and fewer tablets may be key determinant of compliance.</p> <p>Methods</p> <p>Patients with uncomplicated falciparum malaria and over six months of age were recruited in Cameroon, Mali, Rwanda and Sudan. 1,384 patients were randomly assigned to receive artesunate-sulphamethoxypyrazine-pyrimethamine (AS-SMP) three-day (once daily for 3 days) regimen (N = 476) or AS-SMP 24-hour (0 h, 12 h, 24 h) regimen (N = 458) or artemether-lumefantrine (AL), the regular 6 doses regimen (N = 450). The primary objective was to demonstrate non-inferiority (using a margin of -6%) of AS-SMP 24 hours or AS-SMP three days versus AL on the PCR-corrected 28-day cure rate.</p> <p>Results</p> <p>The PCR corrected 28-day cure rate on the intention to treat (ITT) analysis population were: 96.0%(457/476) in the AS-SMP three-day group, 93.7%(429/458) in the AS-SMP 24-hour group and 92.0%(414/450) in the AL group. Likewise, the cure rates on the PP analysis population were high: 99.3%(432/437) in the AS-SMP three-day group, 99.5%(416/419) in the AS-SMP 24-hour group and 99.7(391/394)% in the AL group. Most common drug-related adverse events were gastrointestinal symptoms (such as vomiting and diarrhea) which were slightly higher in the AS-SMP 24-hour group.</p> <p>Conclusion</p> <p>AS-SMP three days or AS-SMP 24 hours are safe, are as efficacious as AL, and are well tolerated.</p> <p>Trial registration</p> <p>NCT00484900 <url>http://www.clinicaltrials.gov</url>.</p

    Impact of intermittent preventive treatment with sulphadoxine-pyrimethamine targeting the transmission season on the incidence of clinical malaria in children in Mali

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies have shown that intermittent preventive malaria treatment (IPT) in infants in areas of stable malaria transmission reduces malaria and severe anaemia incidence. However in most areas malaria morbidity and mortality remain high in older children.</p> <p>Methods</p> <p>To evaluate the effect of seasonal IPT with sulphadoxine pyrimethamine (SP) on incidence of malaria disease in area of seasonal transmission, 262 children 6 months-10 years in Kambila, Mali were randomized to receive either IPT with SP twice at eight weeks interval or no IPT during the transmission season of 2002 and were followed up for 12 months. Subjects were also followed during the subsequent transmission season in 2003 to assess possible rebound effect. Clinical malaria cases were treated with SP and followed to assess the <it>in vivo </it>response during both periods.</p> <p>Results</p> <p>The incidence rate of malaria disease per 1,000 person-months during the first 12 months was 3.2 episodes in the treatment group vs. 5.8 episodes in the control group with age-adjusted Protective Efficacy (PE) of 42.5%; [95% CI 28.6%–53.8%]. When the first 16 weeks of follow up is considered age-adjusted PE was 67.5% [95% CI 55.3% – 76.6%]. During the subsequent transmission season, the incidence of clinical malaria per 1000 persons-days was similar between the two groups (23.0 vs 21.5 episodes, age-adjusted IRR = 1.07 [95% CI, 0.90–1.27]). No significant difference was detected in <it>in vivo </it>response between the groups during both periods.</p> <p>Conclusion</p> <p>Two malaria intermittent treatments targeting the peak transmission season reduced the annual incidence rate of clinical malaria by 42.5% in an area with intense seasonal transmission. This simple strategy is likely to be one of the most effectives in reducing malaria burden in such areas.</p> <p>Trial Registration</p> <p>Clinicaltrials.gov NCT00623155</p
    corecore