22 research outputs found

    EVIDENCE FOR IDENTITY OR CLOSE ASSOCIATION OF THE Fc RECEPTOR OF B LYMPHOCYTES AND ALLOANTIGENS DETERMINED BY THE Ir REGION OF THE H-2 COMPLEX

    Get PDF
    Immunoglobulin complexes, composed of heat-aggregated human Ig, were shown to bind to mouse B lymphocytes of a variety of strains, but not to either thymocytes or thymus-derived (T) lymphocytes under a variety of conditions. It was shown that this binding was not due to either natural human antibodies against mouse nor to nonspecific binding of human Ig by mouse lymphocytes. Such complexes were shown to bind to the same sites which bind mouse antibody-antigen complexes. This site is known as the Fc receptor. The binding of Ig complexes to mouse B lymphocytes was markedly inhibited by pretreatment of the lymphocytes with anti-H-2 antisera. A series of experiments indicated the specificity of this result, including the fact that this inhibition was shown not to be due to the artifact of shedding of H-2 antibody-antigen complexes, nor to nonspecific steric inhibition. The antibodies within anti-H-2 antisera which were responsible for this inhibition were specific for alloantigens associated with the Ir region of the H-2 complex (Ia antigens). Antiserum specific for these Ia antigens produced inhibition, whereas antisera specific for antigens determined by the K or D regions of the H-2 complex did not. Evidence was obtained using F1 hybrid cells that at least some Ia antigens of both parental types are expressed on every B lymphocyte (i.e. codominant expression). These data indicate that the Fc receptor and a series of alloantigens controlled by the Ir region of the H-2 complex are identical or closely associated on the B-lymphocyte surface membrane. This observation may have implications for the mechanism of control of the immune response

    Promoting Translational and Clinical Science: The Critical Role of Medical Schools and Teaching Hospitals

    Get PDF
    Academic translational and clinical research in the US faces serious obstacles. Dickler and colleagues outline the Association of American Medical Colleges recommendations for overcoming those barriers

    Global analyses of human immune variation reveal baseline predictors of postvaccination responses.

    Get PDF
    A major goal of systems biology is the development of models that accurately predict responses to perturbation. Constructing such models requires the collection of dense measurements of system states, yet transformation of data into predictive constructs remains a challenge. To begin to model human immunity, we analyzed immune parameters in depth both at baseline and in response to influenza vaccination. Peripheral blood mononuclear cell transcriptomes, serum titers, cell subpopulation frequencies, and B cell responses were assessed in 63 individuals before and after vaccination and were used to develop a systematic framework to dissect inter- and intra-individual variation and build predictive models of postvaccination antibody responses. Strikingly, independent of age and pre-existing antibody titers, accurate models could be constructed using pre-perturbation cell populations alone, which were validated using independent baseline time points. Most of the parameters contributing to prediction delineated temporally stable baseline differences across individuals, raising the prospect of immune monitoring before intervention
    corecore