10,712 research outputs found

    The z=0.8596 Damped Lyman Alpha Absorbing Galaxy Toward PKS 0454+039

    Get PDF
    We present {\it Hubble Space Telescope} and ground--based data on the zabs=0.8596z_{abs}=0.8596 metal line absorption system along the line of sight to PKS 0454+0356. The system is a moderate redshift damped Lyman alpha system, with N(HI)=(5.7±0.3)×1020{\rm N(HI)}=(5.7\pm0.3)\times10^{20}~cm−2^{-2} as measured from the {\it Faint Object Spectrograph} spectrum. We also present ground--based images which we use to identify the galaxy which most probably gives rise to the damped system; the most likely candidate is relatively underluminous by QSO absorber standards (MB∼−19.0M_B \sim -19.0 for q0=0.5q_0=0.5 and H0=50H_0=50 \kms Mpc−1^{-1}), and lies ∼8.5h−1\sim 8.5h^{-1} kpc in projection from the QSO sightline. Ground--based measurements of Zn~II, Cr~II, and Fe~II absorption lines from this system allow us to infer abundances of [Zn/H]=−1.1-1.1, [Cr/H]=−1.2-1.2, and [Fe/H]=−1.2-1.2, indicating overall metallicity similar to damped systems at z>2z >2, and that the depletion of Cr and Fe onto dust grains may be even {\it less} important than in many of the high redshift systems of comparable metallicity. Limits previously placed on the 21-cm optical depth in the z=0.8596z=0.8596 system, together with our new N(H~I) measurement, suggest a very high spin temperature for the H~I, TS>>580T_S >> 580 K.Comment: changed uuencode header to produce .Z file so that unix uncompress command will work without modifying file nam

    Using the local gyrokinetic code, GS2, to investigate global ITG modes in tokamaks. (I) s-α{\alpha} model with profile and flow shear effects

    Full text link
    This paper combines results from a local gyrokinetic code with analytical theory to reconstruct the global eigenmode structure of the linearly unstable ion-temperature-gradient (ITG) mode with adiabatic electrons. The simulations presented here employ the s-α{\alpha} tokamak equilibrium model. Local gyrokinetic calculations, using GS2 have been performed over a range of radial surfaces, x, and for ballooning phase angle, p, in the range -π≤p≤π{\pi} {\leq} p {\leq\pi}, to map out the complex local mode frequency, Ω0(x,p)=ω0(x,p)+iγ0(x,p){\Omega_0(x, p) = \omega_0(x, p) + i\gamma_0(x, p)}. Assuming a quadratic radial profile for the drive, namely ηi=Ln/LT{\eta_i = L_n/L_T}, (holding constant all other equilibrium profiles such as safety factor, magnetic shear etc.), Ω0(x,p){\Omega_0(x, p)} has a stationary point. The reconstructed global mode then sits on the outboard mid plane of the tokamak plasma, and is known as a conventional or isolated mode, with global growth rate, γ{\gamma} ~ Max[γ0(x,p){\gamma_0(x, p)}], where γ0(x,p){\gamma_0(x, p)} is the local growth rate. Taking the radial variation in other equilibrium profiles (e.g safety factor q(x)) into account, removes the stationary point in Ω0(x,p){\Omega_0(x, p)} and results in a mode that peaks slightly away from the outboard mid-plane with a reduced global growth rate. Finally, the influence of flow shear has also been investigated through a Doppler shift, ω0→ω0+nΩ′x{\omega_0 \rightarrow \omega_0 + n\Omega^{\prime}x}, where n is the toroidal mode number and Ω′{\Omega^{\prime}} incorporates the effect of flow shear. The equilibrium profile variation introduces an asymmetry to the growth rate spectrum with respect to the sign of Ω′{\Omega^{\prime}}, consistent with recent global gyrokinetic calculations.Comment: 10 pages, 8 figures and 1 tabl

    Structure of Micro-instabilities in Tokamak Plasmas: Stiff Transport or Plasma Eruptions?

    Get PDF
    Solutions to a model 2D eigenmode equation describing micro-instabilities in tokamak plasmas are presented that demonstrate a sensitivity of the mode structure and stability to plasma profiles. In narrow regions of parameter space, with special plasma profiles, a maximally unstable mode is found that balloons on the outboard side of the tokamak. This corresponds to the conventional picture of a ballooning mode. However, for most profiles this mode cannot exist and instead a more stable mode is found that balloons closer to the top or bottom of the plasma. Good quantitative agreement with a 1D ballooning analysis is found provided the constraints associated with higher order profile effects, often neglected, are taken into account. A sudden transition from this general mode to the more unstable ballooning mode can occur for a critical flow shear, providing a candidate model for why some experiments observe small plasma eruptions (Edge Localised Modes, or ELMs) in place of large Type I ELMs.Comment: 11 pages, 3 figure

    Producing graphite with desired properties

    Get PDF
    Isotropic or anisotropic graphite is synthesized with precise control of particle size, distribution, and shape. The isotropic graphites are nearly perfectly isotropic, with thermal expansion coefficients two or three times those of ordinary graphites. The anisotropic graphites approach the anisotropy of pyrolytic graphite

    Book Reviews

    Get PDF
    The plight of the public utilities following the World War has been shouted in a babel of demands for increased rates from one and all. The public has turned a doubting or hostile ear to these demands, and the utilities have overwhelmed the utility commissions with a vast mass of evidence to prove their case. None seem to have been harder hit than the electric railways. Some have ceased to operate, automobiles have already made deep cuts in their revenues, and there are not wanting those who predict that the electric railways, operating on fixed tracks, are already out of date and on the way to the scrap heap. One of many results of this situation was the appointment by the President in i919, on recommendation of the Secretaries of Commerce and Labor, of a Federal Commission to study and report upon the electric railway problem. This Federal Electric Railways Commission took an enormous mass of testimony submitted for the American Electric Railways Association by able counsel acting under a special committee of one hundred. The Amalgamated Association of Street and Electric Railway Employes put in an elaborate and carefully prepared case for organized labor. The third party interested, the public, is represented by an unorganized presentation gathered from commissioners, municipal officers, and some utility experts. The Federal Commission engaged Dr. Wilcox, who had been one of the expert witnesses, to analyze the evidence and submit the result, with suggestions. This analysis constitutes the greater part of the book under review

    Kinetic instabilities that limit {\beta} in the edge of a tokamak plasma: a picture of an H-mode pedestal

    Full text link
    Plasma equilibria reconstructed from the Mega-Amp Spherical Tokamak (MAST) have sufficient resolution to capture plasma evolution during the short period between edge-localized modes (ELMs). Immediately after the ELM steep gradients in pressure, P, and density, ne, form pedestals close to the separatrix, and they then expand into the core. Local gyrokinetic analysis over the ELM cycle reveals the dominant microinstabilities at perpendicular wavelengths of the order of the ion Larmor radius. These are kinetic ballooning modes (KBMs) in the pedestal and microtearing modes (MTMs) in the core close to the pedestal top. The evolving growth rate spectra, supported by gyrokinetic analysis using artificial local equilibrium scans, suggest a new physical picture for the formation and arrest of this pedestal.Comment: Final version as it appeared in PRL (March 2012). Minor improvements include: shortened abstract, and better colour table for figures. 4 pages, 6 figure
    • …
    corecore