108 research outputs found

    The chemerin receptor 23 agonist, chemerin, attenuates monosynaptic C-fibre input to lamina I neurokinin 1 receptor expressing rat spinal cord neurons in inflammatory pain

    Get PDF
    BACKGROUND: Recent evidence has shown that the chemerin receptor 23 (ChemR23) represents a novel inflammatory pain target, whereby the ChemR23 agonists, resolvin E1 and chemerin, can inhibit inflammatory pain hypersensitivity, by a mechanism that involves normalisation of potentiated spinal cord responses. This study has examined the ability of the ChemR23 agonist, chemerin, to modulate synaptic input to lamina I neurokinin 1 receptor expressing (NK1R+) dorsal horn neurons, which are known to be crucial for the manifestation of inflammatory pain. RESULTS: Whole-cell patch-clamp recordings from pre-identified lamina I NK1R+ neurons, in rat spinal cord slices, revealed that chemerin significantly attenuates capsaicin potentiation of miniature excitatory postsynaptic current (mEPSC) frequency, but is without effect in non-potentiated conditions. In tissue isolated from complete Freund’s adjuvant (CFA) treated rats, chemerin significantly reduced the peak amplitude of monosynaptic C-fibre evoked excitatory postsynaptic currents (eEPSCs) in a subset of lamina I NK1R+ neurons, termed chemerin responders. However, chemerin did not alter the peak amplitude of monosynaptic C-fibre eEPSCs in control tissue. Furthermore, paired-pulse recordings in CFA tissue demonstrated that chemerin significantly reduced paired-pulse depression in the subset of neurons classified as chemerin responders, but was without effect in non-responders, indicating that chemerin acts presynaptically to attenuate monosynaptic C-fibre input to a subset of lamina I NK1R+ neurons. CONCLUSIONS: These results suggest that the reported ability of ChemR23 agonists to attenuate inflammatory pain hypersensitivity may in part be due to a presynaptic inhibition of monosynaptic C-fibre input to lamina I NK1R+ neurons and provides further evidence that ChemR23 represents a promising inflammatory pain target

    Characterisation of NPFF-expressing neurons in the superficial dorsal horn of the mouse spinal cord

    Get PDF
    Excitatory interneurons in the superficial dorsal horn (SDH) are heterogeneous, and include a class known as vertical cells, which convey information to lamina I projection neurons. We recently used pro-NPFF antibody to reveal a discrete population of excitatory interneurons that express neuropeptide FF (NPFF). Here, we generated a new mouse line (NPFFCre) in which Cre is knocked into the Npff locus, and used Cre-dependent viruses and reporter mice to characterise NPFF cell properties. Both viral and reporter strategies labelled many cells in the SDH, and captured most pro-NPFF-immunoreactive neurons (75–80%). However, the majority of labelled cells lacked pro-NPFF, and we found considerable overlap with a population of neurons that express the gastrin-releasing peptide receptor (GRPR). Morphological reconstruction revealed that most pro-NPFF-containing neurons were vertical cells, but these differed from GRPR neurons (which are also vertical cells) in having a far higher dendritic spine density. Electrophysiological recording showed that NPFF cells also differed from GRPR cells in having a higher frequency of miniature EPSCs, being more electrically excitable and responding to a NPY Y1 receptor agonist. Together, these findings indicate that there are at least two distinct classes of vertical cells, which may have differing roles in somatosensory processing

    Substance P-expressing neurons in the superficial dorsal horn of the mouse spinal cord: insights into their functions and their roles in synaptic circuits

    Get PDF
    The tachykinin peptide substance P (SP) is expressed by many interneurons and some projection neurons in the superficial dorsal horn of the spinal cord. We have recently shown that SP-expressing excitatory interneurons in lamina II correspond largely to a morphological class known as radial cells. However, little is known about their function, or their synaptic connectivity. Here we use a modification of the Brainbow technique to define the excitatory synaptic input to SP radial cells. We show that around half of their excitatory synapses (identified by expression of Homer) are from boutons with VGLUT2, which are likely to originate mainly from local interneurons. The remaining synapses presumably include primary afferents, which generally have very low levels of VGLUT2. Our results also suggest that the SP cells are preferentially innervated by a population of excitatory interneurons defined by expression of green fluorescent protein under control of the gene for gastrin-releasing peptide, and that they receive sparser input from other types of excitatory interneuron. We show that around 40% of lamina I projection neurons express Tac1, the gene encoding substance P. Finally, we show that silencing Tac1-expressing cells in the dorsal horn results in a significant reduction in reflex responses to cold and radiant heat, but does not affect withdrawal to von Frey hairs, or chloroquine-evoked itch

    Morphological and functional properties distinguish the substance P and gastrin-releasing peptide subsets of excitatory interneuron in the spinal cord dorsal horn

    Get PDF
    Excitatory interneurons account for the majority of neurons in the superficial dorsal horn, but despite their presumed contribution to pain and itch, there is still limited information about their organisation and function. We recently identified 2 populations of excitatory interneuron defined by expression of gastrin-releasing peptide (GRP) or substance P (SP). Here, we demonstrate that these cells show major differences in their morphological, electrophysiological, and pharmacological properties. Based on their somatodendritic morphology and firing patterns, we propose that the SP cells correspond to radial cells, which generally show delayed firing. By contrast, most GRP cells show transient or single-spike firing, and many are likely to correspond to the so-called transient central cells. Unlike the SP cells, few of the GRP cells had long propriospinal projections, suggesting that they are involved primarily in local processing. The 2 populations also differed in responses to neuromodulators, with most SP cells, but few GRP cells, responding to noradrenaline and 5-HT; the converse was true for responses to the μ-opioid agonist DAMGO. Although a recent study suggested that GRP cells are innervated by nociceptors and are strongly activated by noxious stimuli, we found that very few GRP cells receive direct synaptic input from TRPV1-expressing afferents, and that they seldom phosphorylate extracellular signal–regulated kinases in response to noxious stimuli. These findings indicate that the SP and GRP cells differentially process somatosensory information

    Defining a spinal microcircuit that gates myelinated afferent input: implications for tactile allodynia

    Get PDF
    Chronic pain presents a major unmet clinical problem. The development of more effective treatments is hindered by our limited understanding of the neuronal circuits underlying sensory perception. Here, we show that parvalbumin (PV)-expressing dorsal horn interneurons modulate the passage of sensory information conveyed by low-threshold mechanoreceptors (LTMRs) directly via presynaptic inhibition and also gate the polysynaptic relay of LTMR input to pain circuits by inhibiting lamina II excitatory interneurons whose axons project into lamina I. We show changes in the functional properties of these PV interneurons following peripheral nerve injury and that silencing these cells unmasks a circuit that allows innocuous touch inputs to activate pain circuits by increasing network activity in laminae I–IV. Such changes are likely to result in the development of tactile allodynia and could be targeted for more effective treatment of mechanical pain

    Characterisation of lamina I anterolateral system neurons that express Cre in a Phox2a-Cre mouse line

    Get PDF
    A recently developed Phox2a::Cre mouse line has been shown to capture anterolateral system (ALS) projection neurons. Here, we used this line to test whether Phox2a-positive cells represent a distinct subpopulation among lamina I ALS neurons. We show that virtually all lamina I Phox2a cells can be retrogradely labelled from injections targeted on the lateral parabrachial area (LPb), and that most of those in the cervical cord also belong to the spinothalamic tract. Phox2a cells accounted for ~ 50–60% of the lamina I cells retrogradely labelled from LPb or thalamus. Phox2a was preferentially associated with smaller ALS neurons, and with those showing relatively weak neurokinin 1 receptor expression. The Phox2a cells were also less likely to project to the ipsilateral LPb. Although most Phox2a cells phosphorylated extracellular signal-regulated kinases following noxious heat stimulation, ~ 20% did not, and these were significantly smaller than the activated cells. This suggests that those ALS neurons that respond selectively to skin cooling, which have small cell bodies, may be included among the Phox2a population. Previous studies have defined neurochemical populations among the ALS cells, based on expression of Tac1 or Gpr83. However, we found that the proportions of Phox2a cells that expressed these genes were similar to the proportions reported for all lamina I ALS neurons, suggesting that Phox2a is not differentially expressed among cells belonging to these populations. Finally, we used a mouse line that resulted in membrane labelling of the Phox2a cells and showed that they all possess dendritic spines, although at a relatively low density. However, the distribution of the postsynaptic protein Homer revealed that dendritic spines accounted for a minority of the excitatory synapses on these cells. Our results confirm that Phox2a-positive cells in lamina I are ALS neurons, but show that the Phox2a::Cre line preferentially captures specific types of ALS cells

    Circuit dissection of the role of somatostatin in itch and pain

    Get PDF
    Stimuli that elicit itch are detected by sensory neurons that innervate the skin. This information is processed by the spinal cord; however, the way in which this occurs is still poorly understood. Here we investigated the neuronal pathways for itch neurotransmission, particularly the contribution of the neuropeptide somatostatin. We find that in the periphery, somatostatin is exclusively expressed in Nppb+ neurons, and we demonstrate that Nppb+somatostatin+ cells function as pruriceptors. Employing chemogenetics, pharmacology and cell-specific ablation methods, we demonstrate that somatostatin potentiates itch by inhibiting inhibitory dynorphin neurons, which results in disinhibition of GRPR+ neurons. Furthermore, elimination of somatostatin from primary afferents and/or from spinal interneurons demonstrates differential involvement of the peptide released from these sources in itch and pain. Our results define the neural circuit underlying somatostatin-induced itch and characterize a contrasting antinociceptive role for the peptide

    Health inequalities, fundamental causes and power:Towards the practice of good theory

    Get PDF
    Reducing health inequalities remains a challenge for policy makers across the world. Beginning from Lewin’s famous dictum that “there is nothing as practical as a good theory”, this paper begins from an appreciative discussion of ‘fundamental cause theory’, emphasizing the elegance of its theoretical encapsulation of the challenge, the relevance of its critical focus for action, and its potential to support the practical mobilisation of knowledge in generating change. Moreover, it is argued that recent developments in the theory, provide an opportunity for further theoretical development focused more clearly on the concept of power (Dickie et al. 2015). A critical focus on power as the essential element in maintaining, increasing or reducing social and economic inequalities – including health inequalities – can both enhance the coherence of the theory, and also enhance the capacity to challenge the roots of health inequalities at different levels and scales. This paper provides an initial contribution by proposing a framework to help to identify the most important sources, forms and positions of power, as well as the social spaces in which they operate. Subsequent work could usefully test, elaborate and adapt this framework, or indeed ultimately replace it with something better, to help focus actions to reduce inequalities
    corecore