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Cellular/Molecular

Inflammatory Pain Reduces C Fiber Activity-Dependent
Slowing in a Sex-Dependent Manner, Amplifying Nociceptive
Input to the Spinal Cord

X Allen C. Dickie, Barry McCormick, Veny Lukito, Kirsten L. Wilson, and X Carole Torsney
Centre for Integrative Physiology, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh EH8 9XD, United Kingdom

C fibers display activity-dependent slowing (ADS), whereby repetitive stimulation (�1 Hz) results in a progressive slowing of action
potential conduction velocity, which manifests as a progressive increase in response latency. However, the impact of ADS on spinal pain
processing has not been explored, nor whether ADS is altered in inflammatory pain conditions. To investigate, compound action potentials were
made, from dorsal roots isolated from rats with or without complete Freund’s adjuvant (CFA) hindpaw inflammation, in response to
electrical stimulus trains. CFA inflammation significantly reduced C fiber ADS at 1 and 2 Hz stimulation rates. Whole-cell patch-clamp
recordings in the spinal cord slice preparation with attached dorsal roots also demonstrated that CFA inflammation reduced ADS in the
monosynaptic C fiber input to lamina I neurokinin 1 receptor-expressing neurons (1–10 Hz stimulus trains) without altering the inci-
dence of synaptic response failures. When analyzed by sex, it was revealed that females display a more pronounced ADS that is reduced
by CFA inflammation to a level comparable with males. Cumulative ventral root potentials evoked by long and short dorsal root stimu-
lation lengths, to maximize and minimize the impact of ADS, respectively, demonstrated that reducing ADS facilitates spinal summation,
and this was also sex dependent. This finding correlated with the behavioral observation of increased noxious thermal thresholds and
enhanced inflammatory thermal hypersensitivity in females. We propose that sex/inflammation-dependent regulation of C fiber ADS
can, by controlling the temporal relay of nociceptive inputs, influence the spinal summation of nociceptive signals contributing to
sex/inflammation-dependent differences in pain sensitivity.

Key words: conduction velocity slowing; dorsal horn; hyperalgesia; nociceptor; primary afferent; spinal output neurons

Introduction
The basic currency of communication in the nervous system is
the action potential. As the action potential is an all-or-none event,

information is coded by the number of action potentials and the
time intervals between them. In the 1920s, Edgar Adrian demon-
strated that the intensity of a sensation is coded by the firing
frequency in afferent nerve fibers in the somatosensory system
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Significance Statement

The intensity of a noxious stimulus is encoded by the frequency of action potentials relayed by nociceptive C fibers to the spinal
cord. C fibers conduct successive action potentials at progressively slower speeds, but the impact of this activity-dependent
slowing (ADS) is unknown. Here we demonstrate that ADS is more prevalent in females than males and is reduced in an inflam-
matory pain model in females only. We also demonstrate a progressive delay of C fiber monosynaptic transmission to the spinal
cord that is similarly sex and inflammation dependent. Experimentally manipulating ADS strongly influences spinal summation
consistent with sex differences in behavioral pain thresholds. This suggests that ADS provides a peripheral mechanism that can
regulate spinal nociceptive processing and pain sensation.

6488 • The Journal of Neuroscience, July 5, 2017 • 37(27):6488 – 6502

https://creativecommons.org/licenses/by/4.0


(Adrian, 1926; Adrian and Zotterman, 1926a,b). Subsequently,
microneurography studies in humans have directly demonstrated
that the firing frequency in C fiber nociceptors encodes pain inten-
sity (Torebjörk et al., 1984; Yarnitsky and Ochoa, 1990). The more
noxious the stimulus, the shorter the intervals between successive
action potentials in nociceptive C fibers and the more intense the
pain experienced.

Nociceptive C fibers display activity-dependent slowing (ADS),
whereby repetitive stimulation results in a progressive slowing of
action potential conduction velocity, which manifests as a progres-
sive increase in response latency in both human (Serra et al., 1999;
Weidner et al., 1999) and animal (Thalhammer et al., 1994; Gee et al.,
1996) studies. Subtypes of C fibers display this phenomenon to dif-
fering degrees such that ADS can be used to functionally classify C
fiber subtypes (Thalhammer et al., 1994; Serra et al., 1999; Weidner
et al., 1999). ADS occurs in a frequency- and length-dependent man-
ner, with greater ADS observed at higher frequencies (Thalhammer
et al., 1994; Gee et al., 1996; Serra et al., 1999; Weidner et al., 1999)
and over longer lengths (Schmelz et al., 1995; Zhu et al., 2009). This
progressive slowing of conduction velocity presumably regulates the
intervals between successive action potentials reaching the spinal
cord, which could influence central pain processing and pain sensa-
tion; however, this has not been investigated.

ADS involves voltage-gated sodium (Nav) channels (De Col et
al., 2008; Obreja et al., 2012), likely Nav1.7 and Nav1.8 (Baker
and Waxman, 2012; Petersson et al., 2014; Tigerholm et al., 2014;
Hoffmann et al., 2016), and is constrained by hyperpolarization-
activated cyclic nucleotide-gated (HCN) channels (Takigawa et
al., 1998; Zhu et al., 2009; Mazo et al., 2013). These channels are
known to be regulated in inflammatory pain (Emery et al., 2012;
Weng et al., 2012; Rahman and Dickenson, 2013; Waxman and
Zamponi, 2014), suggesting that C fiber ADS may be altered in
inflammatory pain. Specifically, CFA inflammation increases both
hyperpolarization-activated current (Ih) and HCN2 expression
levels in C fiber nociceptors (Papp et al., 2010; Acosta et al., 2012;
Weng et al., 2012) and alters Ih activation properties (Djouhri et
al., 2015). Furthermore, deletion of HCN2 in Nav1.8-expressing
neurons, which are mainly C fiber nociceptors, limits inflamma-
tory thermal hyperalgesia (Emery et al., 2011), and peripheral
block of HCN channels attenuates inflammatory pain (Young et
al., 2014). There is also a loss of inflammatory pain phenotype in
Nav1.7 and Nav1.8 knock-out mice and in mice in which Nav1.7
was selectively deleted in Nav1.8-expressing neurons (Akopian et
al., 1999; Nassar et al., 2004, 2005). Furthermore, Nav1.7 and
Nav1.8 channel expression is increased in CFA inflammation
(Coggeshall et al., 2004; Gould et al., 2004; Liang et al., 2013), and
selective blockers of either channel reduce inflammatory pain
(McGowan et al., 2009; Zhang et al., 2010; Bregman et al., 2011;
Yang et al., 2013; Lee et al., 2014; Payne et al., 2015).

The aim of this study was, therefore, to determine whether C
fiber ADS is altered in the CFA inflammation model and the
impact on temporal relay of nociceptive input to the spinal cord.
Given increasing awareness of sex differences in pain sensitivity
and injury-induced hypersensitivity (Mogil and Bailey, 2010;
Mogil, 2012; Bartley and Fillingim, 2013), this was also investi-
gated in both sexes. Furthermore, the impact of ADS on spinal sum-
mation and output was explored using electrophysiological and
behavioral analysis of the nociceptive flexion withdrawal reflex.

Materials and Methods
Animals. All experiments were approved by the University of Edinburgh
Ethical Review Committee and performed in accordance with the UK
Animals (Scientific Procedures) Act 1986. Sprague Dawley rats of both

sexes (University of Edinburgh Biological Research Resources) were used
in all experiments. Animals were housed in cages at 21°C and 55% rela-
tive humidity, with a 12 h light/dark cycle, and food and water were
provided ad libitum.

Inflammatory pain model. To induce peripheral inflammation, juve-
nile rats received an intraplantar injection of complete Freund’s adjuvant
(CFA; 0.5 mg/ml saline) into the left hindpaw (1 �l/g body weight) under
isoflurane anesthesia, at approximately postnatal day 18 (P18), 2–5 d
before patch-clamp or compound action potential electrophysiological
recording at approximately P21. This procedure results in persistent pe-
ripheral hindpaw inflammation and behavioral hypersensitivity in rats of
this age (Torsney, 2011). Control rats were untreated.

Isolated dorsal root preparation. Isolated dorsal roots were prepared as
described previously (Torsney, 2011; Dickie and Torsney, 2014). Briefly,
naive untreated (control) or CFA-treated (approximately P21) rats were
decapitated under isoflurane anesthesia, and spinal cords, with attached
dorsal roots, were removed in ice-cold dissection solution. Lumbar (L4/
L5) dorsal roots (left side only, CFA treated) were cut near the dorsal root
entry zone, and their dorsal root ganglia were removed, before being
placed in 36 –37°C oxygenated recovery solution for 1 h. Roots were
transferred to the recording chamber of an upright microscope (Ziess)
and perfused with oxygenated Krebs’ solution (1–2 ml/min) at room
temperature. The 95% O2/5% CO2-saturated Krebs’ solution contained
(in mM) 125 NaCl, 2.5 KCl, 1.25 NaH2PO4, 26 NaHCO3, 25 glucose, 1
MgCl2, and 2 CaCl2, pH 7.4. Recovery solution was identical to Krebs’
solution apart from 1.5 mM CaCl2 plus 6 mM MgCl2. Dissection solution
was the same as the recovery solution, but with 1 mM kynurenic acid.

Compound action potential recording. Two glass suction electrodes
were used, one for electrical orthodromic stimulation and the second for
recording compound action potentials (CAPs). Dorsal roots were stim-
ulated 10 times at 0.2 Hz (0.1 ms duration), with an ISO-flex stimulus
isolator (A.M.P.I.), at 1, 2, 3, 4, 5, 7.5, 10, 15, 20, and 25 �A; then in 10 �A
steps between 30 and 100 �A and in 50 �A steps between 150 and 500 �A
(Torsney, 2011; Dickie and Torsney, 2014). A 0.1 ms pulse width was
chosen to replicate the electrical stimuli previously established to activate
the different afferent fiber types in this age of rat (Nakatsuka et al., 2000).
However, the possibility of an underestimation of the C fiber contribu-
tion cannot be excluded given that longer pulse widths have also been
used to stimulate C fiber inputs (Baba et al., 1999). The main compo-
nents of the compound action potentials were differentiated as A�, A�,
and C fiber on the basis of activation threshold and conduction ve-
locity, each displaying a characteristic triphasic (positive–negative–
positive) response. Data were acquired and recorded using an ER-1
differential amplifier (Cygnus Technologies) and pClamp 10 software
(Molecular Devices). Data were filtered at 10 kHz and sampled at 50 kHz.

The activation threshold was defined as the lowest stimulation inten-
sity at which the negative component of the triphasic response was clearly
identifiable. The amplitude of each component was calculated by measuring
the distance between the negative and second positive peaks. The conduction
velocity was calculated based on the latency to the negative peak at 20, 100,
and 500 �A for the A�, A�, and C components, respectively.

To assess ADS, dorsal roots were stimulated 16 or 40 times (500 �A
intensity, 0.1 ms duration) at frequencies of 1 or 2 Hz. For each stimulus,
the latency between the stimulus artifact and the negative peak of the
triphasic response was measured, and the change in latency from stimu-
lus 1 was calculated. In some cases, the width of the C fiber component
(positive peak to positive peak) was additionally measured, and the
change in width from stimulus 1 was calculated. To negate any influence
of varying dorsal root length, the latency/width change was normalized
to the length of root stimulated, measured as the distance between the
stimulating and recording electrodes. In a subset of recordings, the stim-
ulating electrode was first placed close to the distal end of the dorsal root
(long stimulation length) and then placed closer to the recording elec-
trode (short stimulation length). By subtracting the latency change val-
ues for “short stimulation length” from “long stimulation length,” the
latency change solely attributable to conduction velocity slowing, inde-
pendent of action potential initiation, was calculated.

Spinal cord slice preparation. Spinal cords with attached dorsal roots,
from which dorsal root ganglia were removed, were obtained from con-
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trol or CFA-treated (approximately P21) rats, as described above. The
lumbar (L4/L5) segment was embedded in an agarose block, and 350 �m
slices, with attached dorsal roots (left side only, CFA treated), were cut.
Slices were placed in oxygenated recovery solution at 36 –37°C for 1 h and
incubated at room temperature for 30 min with 35 nM tetramethylrhodamine-
conjugated substance P (TMR-SP), as described previously (Labrakakis
and MacDermott, 2003; Torsney, 2011; Dickie and Torsney, 2014). Slices
were allowed to recover for an additional 1 h at room temperature before
being transferred to the recording chamber of an upright microscope
(Ziess), equipped with fluorescence for the identification of TMR-SP-
labeled (TMR-SP�) neurons and infrared differential interference con-
trast for electrophysiological recordings, and were continually perfused
with oxygenated Krebs’ solution (1–2 ml/min) at room temperature.

Patch-clamp recording. Whole-cell patch-clamp recordings (holding
potential, �70 mV) were made from TMR-SP� neurons in the lamina I
region of the dorsal horn. The intracellular solution used was composed
of (in mM) 120 Cs-methylsulfonate, 10 Na-methylsulfonate, 10 EGTA, 1
CaCl2, 10 HEPES, 5 N-(2,6-dimethylphenylcarbamoylmethyl)triethy-
lammonium chloride (QX-314-Cl), and 2 Mg 2�-ATP (pH adjusted to
7.2 with CsOH; osmolarity, 290 mOsm), and junction potential was
corrected before recording. Additionally, 1 �M Alexa Fluor 488 hydrazide
was included in the recording pipette. Data were recorded and acquired
with an Axopatch 200B amplifier and pClamp 10 software (Molecular
Devices). Data were filtered at 5 kHz and digitized at 10 kHz.

Monosynaptic primary afferent input to lamina I neurokinin 1 receptor-
positive (NK1R�) neurons was identified as described previously
(Torsney and MacDermott, 2006; Torsney, 2011; Dickie and Torsney,
2014). Evoked EPSCs (eEPSCs) were recorded in response to low-
frequency (0.05 Hz) dorsal root stimulation (three times) at intensities of
20, 100, and 500 �A (0.1 ms stimulus duration) to activate A�, A�, and C
fiber inputs, respectively, using an ISO-flex stimulus isolator. To charac-
terize an input as monosynaptic or polysynaptic, dorsal roots were stim-
ulated (20 times) at the following intensities and frequencies: A�, 20
�A/20 Hz; A�, 100 �A/2 Hz; C, 500 �A/1 Hz. A fiber responses were
considered monosynaptic if they displayed no synaptic failures and a
stable latency (�2 ms), whereas C fiber inputs were considered mono-
synaptic if they displayed no synaptic failures, regardless of whether there
was latency variability (Nakatsuka et al., 2000).

To assess whether monosynaptic A� or monosynaptic C fiber input to
lamina I NK1R� neurons displayed ADS in response to repetitive stim-
ulation, eEPSCs were recorded in response to trains of 16 stimuli deliv-
ered at 1 or 2 Hz (A� and C) or trains of 40 stimuli delivered at 2, 5, or
10 Hz (C only), at intensities of 100 �A (A�) or 500 �A (C). The latency
of each eEPSC was measured as the time between the stimulus artifact
and the onset of the monosynaptic response, and the change in latency
from stimulus 1 was calculated. These latency change data were also
normalized to dorsal root length, measured as the distance between the
stimulating electrode and the dorsal root entry zone, to account for vari-
ations in the length of dorsal root stimulated.

Dorsal root–ventral root potential recording. Control rats (approxi-
mately P10) were decapitated under isoflurane anesthesia, and spinal
cords, with attached dorsal and ventral roots, were removed in ice-cold
dissection solution. Hemisected lumbar spinal cord with only L4/L5 dor-
sal and ventral roots left attached were prepared (Otsuka and Konishi,
1974) and transferred to a recording chamber perfused with oxygenated
Krebs’ solution (�2 ml/min) at room temperature. Two glass suction
electrodes were used, one for electrical stimulation of the dorsal root and
the second for recording ventral root potentials. The stimulating elec-
trode was first placed close to the distal end of the dorsal root (long
stimulation length/more ADS) and then placed closer to the spinal cord
(short stimulation length/less ADS) to assess the impact of length-
dependent ADS on spinal summation. The dorsal root was stimulated 40
times at 2, 5, and 10 Hz (500 �A intensity, 0.1 ms duration) at both sites,
and the cumulative ventral root potential was recorded using a close-
fitting glass electrode placed on the ventral root close to the ventral horn
(Thompson et al., 1994). Data were acquired and recorded using an ER-1
differential amplifier (Cygnus Technologies) and pClamp 10 software
(Molecular Devices). Data were filtered at 10 kHz and sampled at 50
kHz.

Sensory testing. Before and 2–5 d after intraplantar CFA injection (as
detailed above), hindpaw swelling and mechanical and thermal sensitiv-
ity were measured. Hindpaw swelling was assessed by measuring the
thickness of the dorsoventral paw using Vernier calipers. After habitua-
tion on an elevated mesh platform, the mechanical threshold of the
nociceptive flexion withdrawal reflex was determined with von Frey fil-
aments (Stoelting) applied to the midplantar surface of the hindpaw
using the up– down method (Chaplan et al., 1994). After habituation to
the Hargreaves apparatus, radiant heat was applied to the midplantar
surface of the hindpaw (three times stimuli per hindpaw to calculate
average) to determine the noxious thermal withdrawal latency.

Statistical analysis. Area under the curve (AUC) analysis was used to
compare ADS in both CAP and patch-clamp recordings. Group compar-
isons, for both electrophysiology and behavioral data, were performed
using two-way ANOVA with or without repeated-measures analysis as
appropriate, followed by Sidak’s multiple comparisons test or Tukey’s
multiple comparisons test if an interaction between factors was observed.
Averaged data are represented as mean � SE.

Materials. All chemicals were obtained from Sigma, except TMR-SP
(Enzo Life Sciences), Alexa Fluor 488 hydrazide (Invitrogen), QX-314-Cl
(Alomone Labs), and NBQX (Tocris Bioscience).

Results
CFA inflammation reduces C fiber ADS in isolated
dorsal roots
To assess the impact of CFA inflammation on C fiber ADS, dorsal
roots isolated from control or CFA-treated rats were repetitively
stimulated, and the response latencies of A�, A�, and C fiber
compound action potentials were measured. The A�, A�, and C
fiber afferent components were identified on the basis of conduction
velocity and activation threshold (Fig. 1A). CFA inflammation did
not alter threshold stimulus intensity (p � 0.394: A� control (n �
10), 7.6 � 0.80 �A; A� CFA (n � 12), 5.9 � 0.60 �A; A� control
(n � 11), 38.6 � 3.0 �A; A� CFA (n � 13), 34.6 � 2.8 �A; C control
(n � 11), 240.9 � 14.8 �A; C CFA (n � 13), 226.9 � 15.6 �A),
conduction velocity (p � 0.418: A� control, 4.6 � 0.50 m/s; A�
CFA, 5.0 � 0.30 m/s; A� control, 0.9 � 0.1 m/s; A� CFA, 0.7 � 0.1
m/s; C control, 0.2 � 0.01 m/s; C CFA, 0.2 � 0.01 m/s), or amplitude
(p � 0.091: A� control, 1.7 � 0.2 mV; A� CFA, 2.4 � 0.40 mV; A�
control, 0.1 � 0.02 mV; A� CFA, 0.1 � 0.02 mV; C control, 0.1 �
0.02 mV; C CFA, 0.1 � 0.03 mV), as previous studies have demon-
strated in both adult (Baba et al., 1999; Nakatsuka et al., 2000) and
similarly aged juvenile (Torsney, 2011) rats.

Repetitive stimulation of isolated dorsal roots produced a negli-
gible reduction (speeding) in the latency of the A� fiber response
(Fig. 1Bi,Ci) and a marginal increase (slowing) in the A� fiber re-
sponse latency (Fig. 1Bii,Cii). CFA inflammation did not alter these
observations in A fibers (A�, p � 0.693; A�, p � 0.451). In contrast,
repetitive stimulation resulted in a clear progressive increase in C
fiber response latency (Fig. 1Biii) that was confirmed to be frequency
dependent, with 2 Hz stimulation resulting in greater ADS than 1 Hz
stimulation (p � 0.0001; Fig. 1Ciii). Notably, this C fiber ADS was
significantly reduced by CFA inflammation, independent of stimu-
lation frequency (p � 0.0001; Fig. 1Biii,Ciii).

To address the possibility that the observed CFA effect may
reflect altered action potential initiation time rather than altered
conduction velocity slowing, compound action potentials were
recorded with the stimulating electrode placed at two different
positions on an individual dorsal root (Fig. 1Di). Subtraction of
the C fiber latency values recorded after stimulation at position 2
(short stimulation length) from those stimulated at position 1
(long stimulation length) eliminates the contribution of action
potential initiation, leaving only conduction time (between the
two stimulation sites). This also revealed a progressive increase in
C fiber response latency (Fig. 1Dii) that was reduced by CFA
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Figure 1. CFA inflammation reduces C fiber ADS in isolated dorsal roots. Ai, Two suction electrodes were used to stimulate and record compound action potentials from L4/L5 dorsal roots.
Aii, Aiii, Representative compound action potentials recorded from dorsal roots isolated from control (Aii) and CFA-treated (Aiii) rats, illustrating the fast (A�), medium (A�), and slow (C)
conducting components. The 16� traces recorded in response to 2 Hz dorsal root stimulation are shown. Arrowheads indicate the stimulus artifact. Insets magnify the C fiber component, with
dashed lines indicating the negative peaks of the first and last responses. Bi–Biii, Repetitive stimulation of dorsal roots at 2 Hz results in a negligible change in the latency of A� (Bi) or A� (Bii) fiber
responses, whereas C fibers display a progressive increase in response latency (Biii). C, AUC analysis of latency change reveals that CFA inflammation reduces the frequency-dependent progressive
latency change observed in C fibers (2-way ANOVA; CFA, ****p � 0.0001; frequency, ****p � 0.0001). Di–Diii, Eliminating the contribution of action potential initiation time to latency change,
by subtracting the latency values obtained at the short (position 2) from the long (position 1) root stimulation length (Di), confirms that CFA attenuates C fiber ADS (Dii, Diii; 2-way ANOVA; CFA,
**p � 0.009). Data in B and C: A� control, n � 10; CFA, n � 12; A�/C control, n � 11; CFA, n � 13. Data in D: control, n � 10; CFA, n � 12.
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inflammation independent of stimulus frequency (p � 0.009;
Fig. 1Dii,Diii). This suggests that altered action potential initia-
tion time is not, therefore, likely to account for the observed CFA
inflammation-dependent reduction in C fiber ADS. Furthermore,
the demonstration that subtracting the short from the long stimula-
tion length results in a progressive increase in the C fiber response
latency confirms the length dependency of the phenomenon.

CFA inflammation reduces ADS in monosynaptic C fiber
input to lamina I NK1R� neurons
To explore the spinal impact of CFA-reduced C fiber ADS,
whole-cell patch-clamp recordings were made from lamina I
NK1R� neurons, which are likely projection neurons (Marshall
et al., 1996; Todd et al., 2000; Spike et al., 2003; Al-Khater et al.,
2008) that receive monosynaptic input from both C and A� fibers
(Torsney and MacDermott, 2006; Torsney, 2011; Peirs et al.,
2015). Comparison of the synaptic transmission of these inputs,
with their distinct afferent temporal relays (Fig. 1), will provide
insight into the central impact of ADS and its regulation by CFA.
Lamina I NK1R� neurons were preidentified using TMR-SP,
which is not expected to alter recorded synaptic activity (Tong
and MacDermott, 2006) and has been used previously (Tong and
MacDermott, 2006; Torsney and MacDermott, 2006; Torsney,
2011; Dickie and Torsney, 2014; Peirs et al., 2015).

Monosynaptic A� fiber eEPSCs were recorded, in spinal cord
slices from control and CFA-treated rats (Fig. 2A), in response to
dorsal root stimulation at frequencies of 1 and 2 Hz. This resulted
in a small, frequency-dependent (p � 0.016), progressive in-
crease in the eEPSC latency that was unaffected by CFA inflam-
mation (p � 0.570; Fig. 2B,C).

In contrast, repetitive stimulation of monosynaptic C fiber
input to lamina I NK1R� neurons resulted in a progressive in-
crease in response latency that was not altered by stimulation
frequency (p � 0.521) but was markedly reduced by CFA inflam-
mation (p � 0.013; Fig. 3) similar to the population C fiber CAP
recordings. Notably, the initial conduction velocity of monosyn-
aptic C fiber input to lamina I NK1R� neurons was not altered by
CFA inflammation (p � 0.764, Mann–Whitney U test; data not
shown), as demonstrated previously (Torsney, 2011). CFA in-
flammation also did not alter the initial peak amplitude of C fiber
eEPSCs (p � 0.568, Mann–Whitney U test; data not shown), as
reported previously (Torsney, 2011; Dickie and Torsney, 2014),
or the eEPSC amplitude observed during repetitive stimulation
(p � 0.178, two-way ANOVA; data not shown). In summary,
CFA inflammation does not alter the baseline conduction veloc-
ity (CV) of monosynaptic C fiber inputs or their eEPSC peak
amplitudes in lamina I NK1R� neurons, but it significantly re-

Figure 2. CFA inflammation does not alter limited ADS in monosynaptic A� fiber input to lamina I NK1R� neurons. Ai, eEPSCs were recorded from prelabeled lamina I NK1R� neurons in spinal
cord slices in response to stimulation of attached dorsal roots. Aii, Aiii, Representative monosynaptic A� fiber eEPSCs recorded in tissue isolated from control (Aii) and CFA-treated (Aiii) rats. Each
trace comprises 16 traces recorded in response to dorsal root stimulation at 2 Hz. Dashed lines and arrows denote the latency of the first and last trace, measured as the time between the stimulus
artifact (denoted by the arrowhead) and the onset of the monosynaptic response. Bi, Bii, Stimulation of monosynaptic A� fiber input to lamina I NK1R� neurons at 1 Hz (Bi) or 2 Hz (Bii) results in
a small degree of ADS. C, AUC analysis of latency change reveals that CFA inflammation does not affect the small frequency-dependent progressive latency change (2-way ANOVA; CFA, p � 0.570;
frequency, *p � 0.016). 1 Hz: control, n � 7; CFA, n � 12; 2 Hz: control, n � 13; CFA, n � 22. Note that scaling in B and C is identical to that in Figure 3.
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duces the progressive delay in synaptic transmission observed
between C fibers and lamina I NK1R� neurons.

CFA inflammation reduces both the average and range of
ADS within the C fiber population
Longer stimulus trains and higher frequencies produce a more
pronounced C fiber ADS that is associated with the occurrence of
conduction failures (Thalhammer et al., 1994; Nakatsuka et al.,
2000; Zhu et al., 2009), the prevalence of which can be altered in
pain models (Sun et al., 2012; Wang et al., 2016a), which could
additionally impact spinal pain processing. Therefore, to investi-
gate the potential impact of conduction failures, longer stimulus
trains and higher frequencies were used.

In CAP recordings, stimulating isolated dorsal roots with
trains of 40 stimuli delivered at 1 and 2 Hz resulted in a progres-
sive increase in the C fiber response latency, which was frequency
dependent (p � 0.0001) and significantly reduced by CFA in-
flammation (p � 0.005; Fig. 4A). It was not possible to use
higher-frequency stimulation in the CAP recordings as the C
fiber component of the compound action potential diminishes
substantially during repetitive stimulation, presumably because
of conduction failures, and as such could only be reliably quan-
tified at 1 and 2 Hz. The change in C fiber response latency reflects
the change in average conduction velocity of the population C
fiber response. Given that different C fibers display different de-

grees of ADS (Thalhammer et al., 1994; Serra et al., 1999;
Weidner et al., 1999), the change in width of the C fiber response
was also measured (Fig. 4B), as this will reflect the change in range
of conduction velocities present within the population and may,
therefore, be a more informative measure of ADS across the en-
tire C fiber population. Stimulation of 1 and 2 Hz resulted in a
progressive increase in the C fiber response width, which was also
regulated in a frequency- and CFA inflammation-dependent
manner (both p � 0.0001; Fig. 4C). Notably, the initial width of
the C fiber response was not significantly different between con-
trol and CFA tissue (p � 0.27, unpaired t test; data not shown).

CFA inflammation limits the progressive delay in synaptic
transmission between C fibers and lamina I NK1R� neurons
without altering synaptic response failures
In eEPSC recordings, repetitive stimulation (40 times) of the
monosynaptic C fiber input to lamina I NK1R� neurons at 2, 5,
and 10 Hz resulted in a frequency-dependent ADS (p � 0.039)
that was reduced by CFA inflammation (p � 0.0001; Fig. 5A).
Plotting the percentage of lamina I NK1R� neurons displaying
synaptic response failures per stimulus number reveals a progres-
sive increase in the number of failures (Fig. 5Bi–Biii). This pro-
gressive increase in synaptic response failures is, as expected,
frequency dependent, with the total number of failures per lam-
ina I NK1R� neuron increasing with stimulation frequency (p �

Figure 3. CFA inflammation reduces ADS in monosynaptic C fiber input to lamina I NK1R� neurons. Ai, Aii, Representative monosynaptic C fiber eEPSCs recorded in tissue isolated from control
(Ai) and CFA-treated (Aii) rats. Each trace comprises 16 traces recorded in response to repetitive dorsal root stimulation at 1 Hz. Dashed lines and arrows denote the latency of the first and last trace,
measured as the time between the stimulus artifact (denoted by the arrowhead) and the onset of the monosynaptic response. Bi, Bii, Stimulation of monosynaptic C fiber input to lamina I NK1R�
neurons at 1 Hz (Bi) or 2 Hz (Bii) results in a progressive increase in response latency. C, AUC analysis of latency change reveals that CFA attenuates ADS, but it is not affected by stimulation frequency
(2-way ANOVA; CFA, *p � 0.013; frequency, p � 0.521). 1 Hz: control, n � 42; CFA, n � 64; 2 Hz: control, n � 16; CFA, n � 36.
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0.0001). However, the total number of synaptic response failures
was not affected by CFA inflammation (p � 0.971; Fig. 5Biv).

C fiber ADS is regulated in a sex- and inflammation-dependent
manner
To determine whether there is a sex difference in the ADS phenom-
enon CAP (Fig. 6A–C) and eEPSC (Fig. 6D–F), datasets were ana-
lyzed for females and males separately. In CAP recordings from
isolated dorsal roots, a progressive increase in the latency and width
of the population C fiber response was observed in both females (Fig.
6Ai,Aii) and males (Fig. 6Bi,Bii). AUC analysis reveals a significant
interaction between sex and CFA inflammation for both latency
change (Fig. 6Ci; p � 0.037) and width change (Fig. 6Cii; p � 0.003).
ADS is more pronounced in control females, and CFA inflamma-
tion reduces ADS, in females only, to a level that is now com-

parable with males for both latency change (CFA: female, p �
0.031; male, p � 0.998) and width change (CFA: female, p �
0.0001; male, p � 0.525) measures. Initial CV and CAP width
were not altered in a sex- or CFA inflammation-dependent
manner (CV: sex, p � 0.853; CFA, p � 0.120; width: sex, p �
0.482; CFA, p � 0.307; two-way ANOVA; data not shown).

Similarly, patch-clamp recordings from lamina I NK1R�
neurons show a progressive increase in the latency of monosyn-
aptic C fiber-evoked eEPSCs in both females (Fig. 6D) and males
(Fig. 6E). Likewise, AUC analysis reveals a significant interaction
between sex and CFA inflammation (Fig. 6F; p � 0.034). ADS is
more pronounced in control females, and CFA inflammation
reduces ADS, in females only, to a level that is now comparable
with males (CFA: female, p � 0.0057; male, p � 0.996). However,
baseline CV of monosynaptic C fiber inputs was not altered in a

Figure 4. CFA inflammation reduces the average and range of ADS within the C fiber population. Ai–Aiii, C fiber compound action potentials recorded in response to trains of 40 stimuli delivered
at 1 Hz (Ai) or 2 Hz (Aii) results in a progressive slowing of the response latency. AUC analysis of latency change (Aiii) reveals that CFA inflammation reduces the frequency-dependent progressive
latency change (2-way ANOVA; CFA, **p � 0.005; frequency, ****p � 0.0001). Bi, Bii, Representative C fiber compound action potentials recorded, in response to 2 Hz stimulation, from dorsal
roots isolated from control (Bi) and CFA-treated (Bii) rats, with dashed lines and arrows indicating the width (positive–positive peak) of the first and last responses. Ci–Cii, Trains of 40 stimuli
delivered at 1 Hz (Ci) or 2 Hz (Cii) result in a progressive increase in C fiber compound action potential width. Ciii, AUC analysis of width change reveals that CFA inflammation reduces the
frequency-dependent progressive width increase (2-way ANOVA; CFA, ****p � 0.0001; frequency, ****p � 0.0001). Control, n � 18; CFA, n � 16.

6494 • J. Neurosci., July 5, 2017 • 37(27):6488 – 6502 Dickie et al. • Sex-Dependent C Fiber ADS in Inflammatory Pain



sex- or CFA inflammation-dependent manner (sex, p � 0.873;
CFA, p � 0.923; data not shown).

Limiting ADS facilitates spinal summation
Our observations demonstrate that ADS results in a progressive
delay in the synaptic transmission of C fiber input to individual

spinal neurons. Moreover, given that repetitive C fiber stimula-
tion results in a progressive increase in C fiber CAP width, which
reflects the range of CVs within the population, ADS also likely
reduces the temporal coincidence of population C fiber input at a
spinal network level. Together, these findings suggest that ADS
limits temporal summation of C fiber-evoked synaptic activity at

Figure 5. CFA inflammation reduces ADS in monosynaptic C fiber input to lamina I NK1R� neurons during high-frequency stimulus trains but does not alter synaptic response failures. Ai–Aiv,
Repetitive stimulation of monosynaptic C fiber input to lamina I NK1R� neurons, using trains of 40 stimuli, delivered at 2 Hz (Ai), 5 Hz (Aii), or 10 Hz (Aiii), results (Aiv) in a frequency-dependent
progressive increase in the eEPSC latency that is significantly reduced by CFA inflammation (2-way ANOVA; CFA, ****p � 0.0001; frequency, *p � 0.039). Bi–Biii, There is a progressive increase
in the number of synaptic response failures per stimulus number during stimulation of monosynaptic C fiber input to lamina I NK1R� neurons at 2 Hz (Bi), 5 Hz (Bii), or 10 Hz (Biii). Biv, The total number of
synaptic response failures is frequency dependent but not altered by CFA inflammation (2-way repeated-measures ANOVA; CFA, p � 0.971; frequency, ****p � 0.0001). All groups, n � 9.
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a spinal level. Therefore, reducing C fiber ADS should enhance
spinal summation. To test this hypothesis, we took advantage of the
length dependency of ADS (Schmelz et al., 1995; Zhu et al., 2009)
and assessed the impact of long (increased ADS) versus short (de-
creased ADS) root stimulation lengths on spinal summation by re-
cording cumulative dorsal root-evoked ventral root potentials in a
hemisected spinal cord preparation (Fig. 7A). Using this prepara-
tion, we are essentially able to assess the impact of ADS on the cir-
cuitry underlying the nociceptive flexion withdrawal reflex.

Repetitive stimulation of dorsal roots evoked a cumulative
ventral root potential that is blocked, as expected (Thompson et

al., 1992), in the presence of the AMPA receptor antagonist
NBQX (10 �M) and NMDA receptor antagonist APV (50 �M; Fig.
7B). This spinal summation is frequency dependent (Fig. 7Ci), as
previously reported (Thompson et al., 1992). Interestingly, re-
ducing the stimulation length strongly facilitated the cumulative
ventral root potential at 2 Hz stimulation rates (Fig. 7Cii). To
quantify the degree of summation, the amplitude of the cumula-
tive ventral root potential was measured 500 ms after the last
stimulus artifact and normalized to the amplitude measured at
500 ms after a single stimulus at long or short root stimulation
length to account for any potential difference in response ampli-

Figure 6. CFA inflammation reduces ADS, within the C fiber population and in the monosynaptic C fiber input to lamina I NK1R� neurons, in females only. C fiber compound action potentials
recorded in response to 2 Hz trains (40 times stimuli) in females (A) and males (B) results in a progressive slowing of the response latency (i) and width (ii). Ci, Cii, AUC analysis of latency change (Ci)
and width change (Cii) reveals a significant interaction between sex and inflammation (2-way ANOVA; latency change, p � 0.037; width change, p � 0.003) with CFA inflammation reducing ADS
in females only (latency change: females, *p � 0.031; males, p � 0.998; width change: females, ****p � 0.0001; males, p � 0.525; Tukey’s multiple comparisons test). D, E, Monosynaptic eEPSCs
in lamina I NK1R�neurons recorded in response to 2 Hz trains (40 times stimuli) results in a progressive slowing of the response latency in females (D) and males (E). F, AUC analysis of latency change
reveals a significant interaction between sex and inflammation (2-way ANOVA, p � 0.034) with CFA inflammation reducing ADS in females only (female, **p � 0.0057; male, p � 0.996; Tukey’s
multiple comparisons test). CAP: female control, n � 9; female CFA, n � 7; male control, n � 9; male CFA, n � 9. eEPSC: female control, n � 10; female CFA, n � 17; male control, n � 6; male
CFA, n � 16.
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tude between stimulation lengths. Repeated-measures ANOVA
revealed a significant interaction (p � 0.022) between frequency
(p � 0.039)- and length (p � 0.003)-dependent effects, and post-
tests revealed a significant difference between long and short
lengths at 2 Hz stimulation rates only (Fig. 7Di; 2 Hz, p � 0.01).
Given the more pronounced C fiber ADS in females, we predicted
a greater change in facilitation of spinal summation in females versus
males. Indeed, there is a greater difference in the percentage cumu-
lative depolarization between long and short stimulation length in
females at the 2 Hz stimulation rate (Fig. 7Dii; p � 0.028).

To estimate the degree of change in ADS resulting from the
average 	50% reduction in root stimulation length in the dorsal

root–ventral root potential (DR-VRP) recordings and thus the
likely relevance of the findings with respect to our sex/inflammation-
dependent changes in ADS, we revisited the two times length stim-
ulation CAP recordings displayed in Figure 1D. In the CAP
recordings, a comparable reduction in stimulation length (	60%)
reduced ADS by 	20% as measured using AUC analysis of la-
tency change (unpaired t test, p � 0.007; data not shown). There-
fore, in these DR-VRP recordings, the short stimulation length
likely underestimates the average 	30% reduction in ADS com-
pared with the control female grouping (also assessed using AUC
analysis of latency change; Fig. 6Ci), underscoring the impor-
tance of these findings.

Figure 7. Cumulative dorsal root-evoked ventral root potentials are regulated in a frequency- and length-dependent manner. A, Ventral root potentials were recorded from a hemisected spinal
cord preparation in response to long length and short length dorsal root stimulation (20 times) to increase and decrease the spinal impact of ADS, respectively, using suction electrodes.
Bi, Bii, Representative cumulative dorsal root-evoked (5 Hz) ventral root potential (Bi) that is abolished in the presence of NBQX (10 �M) and APV (50 �M; Bii). Stimulus artifact is visible as vertical
lines in all traces. Ci, Cii, Representative cumulative dorsal root-evoked ventral root potentials induced by 2, 5, and 10 Hz stimulation over long (Ci) and short (Cii) dorsal root lengths. Arrows denote
the 500 ms time point, after the last stimulus artifact, when amplitude is measured. Di, Repeated-measures ANOVA of normalized cumulative ventral root potentials reveals both frequency
( p � 0.039)- and length ( p � 0.003)-dependent effects that significantly interact ( p � 0.022) with Sidak’s multiple comparisons test revealing a significant impact of length at 2 Hz only (**p �
0.01; n � 10). Dii, Difference in percentage cumulative depolarization between long and short stimulation lengths at 2 Hz, is significantly greater in females (1-tailed Mann–Whitney U
test, *p � 0.028; n � 5 both groups).
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Females display elevated noxious thermal thresholds and
enhanced inflammatory thermal hyperalgesia
The demonstration that females display more pronounced ADS
that is reduced by CFA inflammation to a level that is comparable
with males (control and CFA) along with the observation that
limiting ADS facilitates cumulative dorsal root-evoked ventral
root potentials, the following predictions can be made regarding
the nociceptive flexion withdrawal reflex: (1) control females
should have higher pain thresholds than control males; (2) if
other underlying inflammatory pain mechanisms are not sex de-
pendent, then CFA inflammation-reduced pain thresholds should be
similar between males and females; and (3) because these pre-
dictions imply a greater reduction in pain threshold in females
versus males, females should display enhanced inflammatory
hypersensitivity.

Figure 8A–C displays behavioral data obtained in response to
noxious radiant heat stimuli in the CFA inflammation model that
supports these predictions. Females show increased inflam-
matory thermal hypersensitivity (Fig. 8B; p � 0.032) that,
importantly, does not appear to be attributable to an increased
inflammatory response because CFA-induced paw swelling is not
significantly different between sexes (Fig. 8D; p � 0.513). It in-
stead reflects a larger reduction in thermal pain thresholds from
an elevated baseline level as can be observed by comparing con-
tralateral male and female withdrawal latencies (Fig. 8A). Nota-
bly, AUC analysis of thermal withdrawal latency values (2–5 d
after CFA) reveals a significant interaction (p � 0.044) between
sex and hindpaw (ipsilateral/contralateral) with post-tests reveal-
ing significantly higher control/contralateral hindpaw values in
females (p � 0.022). The mechanical threshold of the flexion
withdrawal reflex was assessed using von Frey monofilaments
(Fig. 8E). AUC analysis reveals no significant interaction between
sex and hindpaw (repeated-measures ANOVA, p � 0.180; data
not shown). Furthermore, inflammatory mechanical hyper-
sensitivity was not altered in a sex-dependent manner (Fig. 8F;
p � 0.548).

Discussion
We found that C fiber ADS is more pronounced in females than
males and is reduced by CFA inflammation in females only. This
alters the timing of synaptic transmission of monosynaptic C
fiber input to lamina I NK1R� neurons. Experimental manipu-
lation of ADS demonstrates it can influence spinal summation
consistent with observed sex differences in noxious thermal
thresholds. We propose that ADS regulates nociceptive drive to
central pain circuits.

Underlying mechanisms of ADS
The underlying mechanism of ADS is not fully understood. It was
initially proposed to result from Na�–K�–ATPase-dependent
membrane hyperpolarization (Rang and Ritchie, 1968; Bostock
and Grafe, 1985), but Na�-K�-ATPase blockade increased
rather than reduced ADS (De Col et al., 2008). Pharmacological
studies then suggested ADS reflects increased numbers of Nav
channels entering a slow-inactivated state (De Col et al., 2008;
Obreja et al., 2012). However, modeling suggested that although
Nav channel slow inactivation contributes, ADS is most readily
associated with an increase in intra-axonal Na� concentration
(Tigerholm et al., 2014). Investigation of the differences between
mechano-insensitive C fibers that display the greatest ADS versus
mechano-sensitive C fibers that display minimal ADS (Weidner
et al., 1999; Obreja et al., 2010) revealed that pronounced ADS
was associated with more Nav1.8, less Nav1.7, more delayed rec-

tifier potassium channel, and less Na�/K� ATPase, a profile
consistent with enhanced accumulation of intracellular Na �

(Petersson et al., 2014). Notably, given the observed sex/
inflammation-dependent ADS, these molecules are regulated by
peripheral inflammation (Coggeshall et al., 2004; Gould et al.,
2004; Zhang and Nicol, 2004; Liang et al., 2013; Rahman and
Dickenson, 2013; Waxman and Zamponi, 2014; Wang et al.,
2015), but, despite being key pharmaceutical targets, sex differ-
ences in their regulation in C fiber nociceptors have not been
explored.

In addition to the aforementioned molecules implicated in
ADS, there are many other ion channels/receptors whose expres-
sion, location, and/or function can be altered by inflammation
(Gold and Gebhart, 2010) and may contribute to altered ADS.
Furthermore, previous studies have reported CFA inflammation
induced changes in C fiber nociceptor excitability, including in-
creased CV combined with reduced electrical thresholds in
guinea pig (Djouhri and Lawson, 2001) not replicated in this or
other rat studies (Baba et al., 1999; Nakatsuka et al., 2000;
Torsney, 2011), altered action potential shape (Djouhri and Law-
son, 1999; Zhang et al., 2012), and spontaneous firing (Djouhri et
al., 2006; Xiao and Bennett, 2007; Matson et al., 2015). Moreover,
estrogen exacerbates inflammation-increased excitability of tem-
poromandibular joint afferents (Flake et al., 2005), and there are
sex differences in inflammatory sensitization of dural afferents
(Scheff and Gold, 2011).

Evidence for altered ADS
Consistent with our observed inflammation-altered ADS, the
inflammatory mediator NGF reduces ADS in the mechano-
insensitive C fibers that normally display pronounced ADS (Ob-
reja et al., 2011) and is associated with less Nav1.8, more Nav1.7,
less delayed rectifier potassium channel, and more Na�/K� AT-
Pase (Petersson et al., 2014). Furthermore, there is reduced ADS
in a diabetic neuropathic pain model (Wang et al., 2016b). In
contrast, there is enhanced ADS in the spinal nerve ligation
model of neuropathic pain (Shim et al., 2007), but these findings
need to be considered within a partially denervated pain circuitry.
Microneurography studies have also demonstrated altered ADS
in chronic pain patients (Ørstavik et al., 2003, 2006; Kleggetveit et
al., 2012; Serra et al., 2014), interestingly, including patients with
mutations in Nav1.7 (Namer et al., 2015) and Nav1.8 (Kist et al.,
2016).

Physiological relevance of ADS
C fiber ADS is physiologically relevant because it occurs not
only after electrical stimulation but also in response to natural
stimulation of the skin (Thalhammer et al., 1994). Electrical
stimulation-induced ADS is useful as it can provide a readout of
nociceptor excitability given the key roles of molecules impli-
cated in ADS, such as Nav and HCN channels, in action potential
generation and regulation of initial firing frequency in nociceptor
terminals. It is not surprising, therefore, that altered ADS profiles
are associated with changes in C fiber thresholds (Obreja et al.,
2011), that ADS correlates with spontaneous firing (Kleggetveit
et al., 2012), and that ADS is accompanied by a parallel increase in
C fiber mechanical threshold (De Col et al., 2012).

Moreover, ADS is proposed to provide a memory trace of
previous activity levels that can influence responses to subse-
quent inputs. Specifically, low-level firing comparable with spon-
taneous firing rates in inflammatory pain induces ADS that
dynamically influences the response to higher-frequency inputs
such that they display reduced ADS or even speeding (Weidner et
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al., 2002). Importantly, in our data, inflammation-induced spon-
taneous C fiber firing will likely be absent, attributable to the lack
of peripheral inflamed tissue, in our ex vivo preparations. There-
fore, our observations may well underestimate the degree of
inflammation-reduced ADS as our recorded data likely only re-
flect the inflammation-altered expression levels of ion channels

involved in ADS and not the dynamic regulation of ADS by on-
going C fiber activity.

Here we demonstrate that, in addition to ADS providing a
nociceptor excitability readout and a dynamic memory, the pro-
gressive slowing per se significantly influences the relay of noci-
ceptive signals such that the firing frequency initiated in the

Figure 8. Behavioral analysis of the nociceptive flexion withdrawal reflex demonstrates elevated thermal pain thresholds and enhanced inflammatory thermal hyperalgesia in females.
A, Ipsilateral (ipsi) and contralateral (cont) hindpaw withdrawal latencies to noxious radiant heat stimuli (Hargreaves) were measured in female and male rats before and 2–5 d after CFA intraplantar
injection. B, Ipsilateral withdrawal latency values expressed as a percentage of contralateral values reveal a sex difference in thermal hyperalgesia (repeated-measures ANOVA, *p � 0.032). C, AUC
analysis (2–5 d after CFA, ****p � 0.0001) shows a significant sex difference in contralateral hindpaw withdrawal latency with higher values in females (2-way ANOVA, followed by Sidak’s multiple
comparisons test, *p � 0.022). D, Ipsilateral hindpaw thickness is expressed as a percentage of contralateral values and demonstrates that CFA-induced paw swelling is not sex dependent
(repeated-measures ANOVA, p � 0.513). E, Ipsilateral and contralateral hindpaw mechanical thresholds (von Frey) were also measured in the same female and male rats before and 2–5 d after CFA
intraplantar injection. F, Ipsilateral mechanical thresholds are expressed as a percentage of contralateral values and demonstrate that mechanical inflammatory hypersensitivity is not sex dependent
(repeated-measures ANOVA, p � 0.548). All graphs: female, n � 9; male, n � 7.
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periphery is not faithfully transmitted to the spinal cord. In indi-
vidual spinal neurons, there is a progressive delay in synaptic
transmission of C fiber inputs, and we also observe a progressive
reduction in temporal coincidence of population C fiber input
that we predicted should alter summation at a spinal network
level. Decreasing stimulation length in DR-VRP recordings dem-
onstrated that reducing ADS did indeed facilitate spinal summa-
tion. Interestingly, facilitation was only significant at the 2 Hz
stimulation rate and, strikingly, increased summation to a level
comparable with that observed at 10 Hz. The lack of effect at
higher frequencies probably reflects the increased incidence of
synaptic failures with increasing stimulation frequency (Fig. 5B),
likely resulting from frequency-dependent C fiber conduction
failure (Nakatsuka et al., 2000; Zhu et al., 2009; Sun et al., 2012;
Wang et al., 2016a) that will limit the maximal extent of spinal
summation. Notably, spontaneous firing rates resulting from tis-
sue inflammation are typically �1 Hz (Djouhri et al., 2006; Xiao
and Bennett, 2007; Matson et al., 2015), whereas noxious stimuli
evoke firing in the 1–10 Hz range (Lynn and Carpenter, 1982;
Leem et al., 1993). We therefore propose that reducing ADS
thereby promotes temporal coincidence of nociceptive input, as a
novel mechanism of hyperalgesia whereby lower-intensity nox-
ious inputs can be amplified but high-intensity inputs are not
further amplified because of transmission failures, which may
reflect an intrinsic self-inhibition mechanism to limit overdrive
of the nociceptive pathways. Notably, ADS was altered in the
monosynaptic C fiber input to lamina I NK1R� likely projection
neurons that display tightly controlled spike timing-dependent
plasticity (Li and Baccei, 2016). Therefore, these changes in ADS
may influence the involvement of these output neurons in syn-
aptic plasticity (Ikeda et al., 2003, 2006), spinal supraspinal loop
activity (Suzuki et al., 2002), and chronic pain (Mantyh et al.,
1997; Nichols et al., 1999). Finally, promotion of closely timed
nociceptive inputs appears to be a feature after injury with the
recent demonstration of novel DRG neuronal coactivation after
CFA inflammation that contributes to mechanical hyperalgesia
(Kim et al., 2016).

The pronounced ADS in control females that was reduced by
CFA to male levels, along with the observation that limiting ADS
facilitates spinal summation, was consistent with behavioral ob-
servations of elevated noxious thermal latencies and enhanced
inflammatory thermal hyperalgesia in females. Whereas the en-
hanced hypersensitivity is consistent with sex differences in hu-
man studies, the elevated noxious thermal latencies are not
(Mogil, 2012; Bartley and Fillingim, 2013). However, we studied
spinal reflex behaviors in which the afferent input is a major
component of the underlying neural circuitry, whereas human
subjective pain scoring additionally involves higher-level cogni-
tive processing. If differing degrees of ADS contributes to sex
differences in pain thresholds, it is not surprising that this is
specific for thermal versus mechanical sensitivity because the
inflammatory mediator NGF can reduce ADS in mechano-
insensitive C fibers that can respond to heat (Schmidt et al., 1995;
Schmelz et al., 1997) without unmasking of mechanical sensitiv-
ity (Obreja et al., 2011). However, the lack of sex differences in
mechanical sensitivity may reflect the use of von Frey hairs to
identify mechanical thresholds rather than a noxious mechanical
stimulus. Alternatively, it may be that different peripheral mech-
anisms, DRG neuronal coupling and reduced ADS, are used to
augment noxious mechanical and thermal inputs, respectively. It
will be important to determine the extent to which ADS regulates
the processing of noxious stimuli in vivo and also identify the

mechanisms underlying sex-dependent ADS and whether these
are controlled by sex hormones or genetic factors.

It has been long established that the intensity of a sensation
is encoded by afferent firing frequency. Here we propose that
the firing frequency initiated in the periphery is diminished en
route to the CNS by ADS in nociceptive C fibers and that
inflammation/sex-dependent regulation of ADS can thereby pe-
ripherally modulate spinal processing and pain sensation.
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