6 research outputs found
Detecting transthyretin amyloid cardiomyopathy (ATTR-CM) using machine learning: an evaluation of the performance of an algorithm in a UK setting
Objective: The aim of this study was to evaluate the potential real-world application of a machine learning (ML) algorithm, developed and trained on heart failure (HF) cohorts in the USA, to detect patients with undiagnosed wild type cardiac amyloidosis (ATTRwt) in the UK.
//
Design: In this retrospective observational study, anonymised, linked primary and secondary care data (Clinical Practice Research Datalink GOLD and Hospital Episode Statistics, respectively, were used to identify patients diagnosed with HF between 2009 and 2018 in the UK. International Classification of Diseases (ICD)-10 clinical modification codes were matched to equivalent Read (primary care) and ICD-10 WHO (secondary care) diagnosis codes used in the UK. In the absence of specific Read or ICD-10 WHO codes for ATTRwt, two proxy case definitions (definitive and possible cases) based on the degree of confidence that the contributing codes defined true ATTRwt cases were created using ML.
//
Primary outcome measure: Algorithm performance was evaluated primarily using the area under the receiver operating curve (AUROC) by comparing the actual versus algorithm predicted case definitions at varying sensitivities and specificities.
//
Results: The algorithm demonstrated strongest predictive ability when a combination of primary care and secondary care data were used (AUROC: 0.84 in definitive cohort and 0.86 in possible cohort). For primary care or secondary care data alone, performance ranged from 0.68 to 0.78.
//
Conclusion: The ML algorithm, despite being developed in a US population, was effective at identifying patients that may have ATTRwt in a UK setting. Its potential use in research and clinical care to aid identification of patients with undiagnosed ATTRwt, possibly enabling earlier diagnosis in the disease pathway, should be investigated
Undertaking multi-centre randomised controlled trials in primary care: learnings and recommendations from the PULsE-AI trial researchers
Background
Conducting effective and translational research can be challenging and few trials undertake formal reflection exercises and disseminate learnings from them. Following completion of our multicentre randomised controlled trial, which was impacted by the COVID-19 pandemic, we sought to reflect on our experiences and share our thoughts on challenges, lessons learned, and recommendations for researchers undertaking or considering research in primary care.
Methods
Researchers involved in the Prediction of Undiagnosed atriaL fibrillation using a machinE learning AlgorIthm (PULsE-AI) trial, conducted in England from June 2019 to February 2021 were invited to participate in a qualitative reflection exercise. Members of the Trial Steering Committee (TSC) were invited to attend a semi-structured focus group session, Principal Investigators and their research teams at practices involved in the trial were invited to participate in a semi-structured interview. Following transcription, reflexive thematic analysis was undertaken based on pre-specified themes of recruitment, challenges, lessons learned, and recommendations that formed the structure of the focus group/interview sessions, whilst also allowing the exploration of new themes that emerged from the data.
Results
Eight of 14 members of the TSC, and one of six practices involved in the trial participated in the reflection exercise. Recruitment was highlighted as a major challenge encountered by trial researchers, even prior to disruption due to the COVID-19 pandemic. Researchers also commented on themes such as the need to consider incentivisation, and challenges associated with using technology in trials, especially in older age groups.
Conclusions
Undertaking a formal reflection exercise following the completion of the PULsE-AI trial enabled us to review experiences encountered whilst undertaking a prospective randomised trial in primary care. In sharing our learnings, we hope to support other clinicians undertaking research in primary care to ensure that future trials are of optimal value for furthering knowledge, streamlining pathways, and benefitting patients
Undertaking multi-centre randomised controlled trials in primary care: learnings and recommendations from the PULsE-AI trial researchers
Background: Conducting effective and translational research can be challenging and few trials undertake formal reflection exercises and disseminate learnings from them. Following completion of our multicentre randomised controlled trial, which was impacted by the COVID-19 pandemic, we sought to reflect on our experiences and share our thoughts on challenges, lessons learned, and recommendations for researchers undertaking or considering research in primary care. Methods: Researchers involved in the Prediction of Undiagnosed atriaL fibrillation using a machinE learning AlgorIthm (PULsE-AI) trial, conducted in England from June 2019 to February 2021 were invited to participate in a qualitative reflection exercise. Members of the Trial Steering Committee (TSC) were invited to attend a semi-structured focus group session, Principal Investigators and their research teams at practices involved in the trial were invited to participate in a semi-structured interview. Following transcription, reflexive thematic analysis was undertaken based on pre-specified themes of recruitment, challenges, lessons learned, and recommendations that formed the structure of the focus group/interview sessions, whilst also allowing the exploration of new themes that emerged from the data. Results: Eight of 14 members of the TSC, and one of six practices involved in the trial participated in the reflection exercise. Recruitment was highlighted as a major challenge encountered by trial researchers, even prior to disruption due to the COVID-19 pandemic. Researchers also commented on themes such as the need to consider incentivisation, and challenges associated with using technology in trials, especially in older age groups. Conclusions: Undertaking a formal reflection exercise following the completion of the PULsE-AI trial enabled us to review experiences encountered whilst undertaking a prospective randomised trial in primary care. In sharing our learnings, we hope to support other clinicians undertaking research in primary care to ensure that future trials are of optimal value for furthering knowledge, streamlining pathways, and benefitting patients
Detecting transthyretin amyloid cardiomyopathy (ATTR-CM) using machine learning: an evaluation of the performance of an algorithm in a UK setting
Objective The aim of this study was to evaluate the potential real-world application of a machine learning (ML) algorithm, developed and trained on heart failure (HF) cohorts in the USA, to detect patients with undiagnosed wild type cardiac amyloidosis (ATTRwt) in the UK.Design In this retrospective observational study, anonymised, linked primary and secondary care data (Clinical Practice Research Datalink GOLD and Hospital Episode Statistics, respectively, were used to identify patients diagnosed with HF between 2009 and 2018 in the UK. International Classification of Diseases (ICD)-10 clinical modification codes were matched to equivalent Read (primary care) and ICD-10 WHO (secondary care) diagnosis codes used in the UK. In the absence of specific Read or ICD-10 WHO codes for ATTRwt, two proxy case definitions (definitive and possible cases) based on the degree of confidence that the contributing codes defined true ATTRwt cases were created using ML.Primary outcome measure Algorithm performance was evaluated primarily using the area under the receiver operating curve (AUROC) by comparing the actual versus algorithm predicted case definitions at varying sensitivities and specificities.Results The algorithm demonstrated strongest predictive ability when a combination of primary care and secondary care data were used (AUROC: 0.84 in definitive cohort and 0.86 in possible cohort). For primary care or secondary care data alone, performance ranged from 0.68 to 0.78.Conclusion The ML algorithm, despite being developed in a US population, was effective at identifying patients that may have ATTRwt in a UK setting. Its potential use in research and clinical care to aid identification of patients with undiagnosed ATTRwt, possibly enabling earlier diagnosis in the disease pathway, should be investigated
An acetonitrile solvatomorph of dichlorido(1,10-phenanthroline-5,6-dione)platinum(II)
In the title complex, [PtCl2(C12H6N2O2)]·CH3CN, the PtII atom lies in a slightly distorted square-planar arrangement defined by an N2Cl2 donor set. In the packed structure, columns of complex moieties are stacked such that the neighboring units are oriented at 180° and laterally displaced with respect to each other. This prevents any overlap of the phenanthroline rings and thus there is no possibility of any π–π interactions between aromatic rings
Using machine learning to predict anticoagulation control in atrial fibrillation: A UK Clinical Practice Research Datalink study
Objective: To investigate the predictive performance of machine learning (ML) algorithms for estimating anticoagulation control in patients with atrial fibrillation (AF) who are treated with warfarin. Methods: This was a retrospective cohort study of adult patients (≥18 years) between 2007 and 2016 using linked primary and secondary care data (Clinical Practice Research Datalink GOLD and Hospital Episode Statistics). Various ML techniques were explored to predict suboptimal anticoagulation control, defined as time in therapeutic range (TTR) 80 years and <70 kg, respectively). Addition of time-varying data to the LSTM NN improved predictive performance, plateauing at AUC of 0.830 at 30 weeks. Conclusion: ML algorithms displayed clinically useful ability to predict patients who are at greater risk of suboptimal control. The addition of time-varying data to the algorithm, especially prior INR measurements, improved predictive performance. These algorithms provide improved predictive tools for identifying patients who may benefit from more frequent INR monitoring or switching to alternative therapies