5 research outputs found

    The Simons Observatory: Design, integration, and testing of the small aperture telescopes

    No full text
    International audienceThe Simons Observatory (SO) is a cosmic microwave background (CMB) survey experiment that includes small-aperture telescopes (SATs) observing from an altitude of 5,200 m in the Atacama Desert in Chile. The SO SATs will cover six spectral bands between 27 and 280 GHz to search for primordial B-modes to a sensitivity of σ(r)=0.002\sigma(r)=0.002, with quantified systematic errors well below this value. Each SAT is a self-contained cryogenic telescope with a 35^\circ field of view, 42 cm diameter optical aperture, 40 K half-wave plate, 1 K refractive optics, and 12,00012,000 TES detectors. We describe the nominal design of the SATs and present details about the integration and testing for one operating at 93 and 145 GHz

    The Simons Observatory: Design, integration, and testing of the small aperture telescopes

    No full text
    International audienceThe Simons Observatory (SO) is a cosmic microwave background (CMB) survey experiment that includes small-aperture telescopes (SATs) observing from an altitude of 5,200 m in the Atacama Desert in Chile. The SO SATs will cover six spectral bands between 27 and 280 GHz to search for primordial B-modes to a sensitivity of σ(r)=0.002\sigma(r)=0.002, with quantified systematic errors well below this value. Each SAT is a self-contained cryogenic telescope with a 35^\circ field of view, 42 cm diameter optical aperture, 40 K half-wave plate, 1 K refractive optics, and 12,00012,000 TES detectors. We describe the nominal design of the SATs and present details about the integration and testing for one operating at 93 and 145 GHz

    The Simons Observatory: Design, integration, and testing of the small aperture telescopes

    No full text
    International audienceThe Simons Observatory (SO) is a cosmic microwave background (CMB) survey experiment that includes small-aperture telescopes (SATs) observing from an altitude of 5,200 m in the Atacama Desert in Chile. The SO SATs will cover six spectral bands between 27 and 280 GHz to search for primordial B-modes to a sensitivity of σ(r)=0.002\sigma(r)=0.002, with quantified systematic errors well below this value. Each SAT is a self-contained cryogenic telescope with a 35^\circ field of view, 42 cm diameter optical aperture, 40 K half-wave plate, 1 K refractive optics, and 12,00012,000 TES detectors. We describe the nominal design of the SATs and present details about the integration and testing for one operating at 93 and 145 GHz
    corecore