7,374 research outputs found

    Curvature corrections in DGP brane cosmology

    Full text link
    We consider a DGP inspired brane scenario where the action on the brane is augmented by a function of the Ricci scalar, L(R){\cal L}(R). The cosmological implications that such a scenario entails are examined for RnR^{n} and shown to be consistent with a universe expanding with power-law acceleration. It is shown that two classes of solutions exist for the usual FRW metric and small Hubble radii. When the Hubble radius becomes larger, we either have a transition to a fully 5D regime or to a self-inflationary solution which produces a late accelerated expansion such that the radius becomes a function of nn.Comment: 11 pages, 2 figure

    Some photometer results obtained on the NASA 1969 Airborne Auroral Expedition

    Get PDF
    The spectral features measured by a photometer onboard the Convair 990 Galileo, during the Auroral Expedition are given in tables. The measurements given cover flights 3 to 15

    Operational parameters for the superconducting cavity maser

    Get PDF
    Tests of the superconducting cavity maser (SCM) ultra-stable frequency source have been made for the first time using a hydrogen maser for a frequency reference. In addition to characterizing the frequency stability, the sensitivity of the output frequency to several crucial parameters was determined for various operating conditions. Based on this determination, the refrigeration and thermal control systems of the SCM were modified. Subsequent tests showed substantially improved performance, especially at the longest averaging times

    Capable People

    Get PDF

    Gravity induced over a smooth soliton

    Get PDF
    I consider gravity induced over a smooth (finite thickness) soliton. Graviton kinetic term is coupled to bulk scalar that develops solitonic vacuum expectation value. Couplings of Kaluza-Klein modes to soliton-localized matter are suppressed, giving rise to crossover distance rc=MP2/M3r_c=M_{P}^2/M_{*}^3 between 4D and 5D behavior. This system can be viewed as a finite thickness brane regularization of the model of Dvali, Gabadadze and Porrati.Comment: 12 pages, 2 figure

    Development of a breadboard model correlation interferometer for the carbon monoxide pollution experiment

    Get PDF
    The breadboard model of the correlation interferometer for the Carbon Monoxide Pollution Experiment has been designed, fabricated, and tested. Laboratory, long-path, and atmospheric tests which were performed show the technique to be a feasible method for obtaining a global carbon monoxide map and a vertical carbon monoxide profile and similar information is readily obtainable for methane as well. In addition, the technique is readily applicable to other trace gases by minor instrumental changes. As shown by the results and the conclusions, it has been determined that CO and CH4 data can be obtained with an accuracy of 10% using this technique on the spectral region around 2.3 microns

    Application of quasi-Monte Carlo methods to PDEs with random coefficients -- an overview and tutorial

    Full text link
    This article provides a high-level overview of some recent works on the application of quasi-Monte Carlo (QMC) methods to PDEs with random coefficients. It is based on an in-depth survey of a similar title by the same authors, with an accompanying software package which is also briefly discussed here. Embedded in this article is a step-by-step tutorial of the required analysis for the setting known as the uniform case with first order QMC rules. The aim of this article is to provide an easy entry point for QMC experts wanting to start research in this direction and for PDE analysts and practitioners wanting to tap into contemporary QMC theory and methods.Comment: arXiv admin note: text overlap with arXiv:1606.0661

    Novel design of an all-cryogenic RF pound circuit

    Get PDF

    Graviton Mass or Cosmological Constant?

    Full text link
    To describe a massive graviton in 4D Minkowski space-time one introduces a quadratic term in the Lagrangian. This term, however, can lead to a readjustment or instability of the background instead of describing a massive graviton on flat space. We show that for all local Lorentz-invariant mass terms Minkowski space is unstable. We start with the Pauli-Fierz (PF) term that is the only local mass term with no ghosts in the linearized approximation. We show that nonlinear completions of the PF Lagrangian give rise to instability of Minkowski space. We continue with the mass terms that are not of a PF type. Although these models are known to have ghosts in the linearized approximations, nonlinear interactions can lead to background change due to which the ghosts are eliminated. In the latter case, however, the graviton perturbations on the new background are not massive. We argue that a consistent theory of a massive graviton on flat space can be formulated in theories with extra dimensions. They require an infinite number of fields or non-local description from a 4D point of view.Comment: 16 pages; references and comments adde
    corecore