409 research outputs found

    How Is CYP17A1 Activity Altered in Autism? A Pilot Study to Identify Potential Pharmacological Targets.

    Get PDF
    Background: Increasing evidence exists that higher levels of androgens can be found in individuals with autism. Evidence yields to a susceptible role of Cytochrome P450 17A1 (CYP17A1) with its catalyzation of the two distinct types of substrate oxidation by a hydroxylase activity (17-alpha hydroxylase) and C17/20 lyase activity. However, to what extent steps are altered in affected children with autism versus healthy controls remains to be elucidated. Methods: Urine samples from 48 boys with autism (BMI 19.1 ± 0.6 kg/m2, age 14.2 ± 0.5 years) and a matched cohort of 48 healthy boys (BMI 18.6 ± 0.3 kg/m2, 14.3 ± 0.5 years) as well as 16 girls with autism (BMI 17.5 ± 0.7 kg/m2, age 13.8 ± 1.0 years) and a matched cohort of 16 healthy girls (BMI 17.2 ± 0.8 kg/m2, age 13.2 ± 0.8 years) were analyzed for steroid hormone metabolites by gas chromatography-mass spectrometry. Results: The activity of 17-alpha Hydroxylase increased by almost 50%, whereas activity of 17/20 Lyase activity increased by around 150% in affected children with autism. Furthermore, the concentration of Cortisol was higher as compared to the average increase of the three metabolites TH-Corticosterone, 5α-TH-Corticosterone and TH-11β-DH-Corticosterone, indicating, in addition, a stimulation by the CRH-ACTH system despite a higher enzymatic activity. Discussion: As it was shown that oxidative stress increases the 17/20-lyase activity via p38α, a link between higher steroid hormone levels and oxidative stress can be established. However, as glucocorticoid as well as androgen metabolites showed higher values in subjects affected with autism as compared to healthy controls, the data indicate, despite higher CYP17A1 activity, the presence of increased substrate availability in line with the Cholesterol theory of autism

    Enhancing software engineering processes towards sustainable software product design

    Get PDF
    Abstract The power consumption of ICT is still increasing. To date, it is not clear if the energy savings through ICT overbalance the energy consumption by ICT, or not. Where manifold efforts of Green IT address the environmental aspects of sustainability considering computer hardware, there is a lack of models, descriptions, or realizations in the area of computer software. In this paper, we propose a generic software development process enhancement that has the potential to integrate the consideration of sustainability aspects into arbitrary software development methodologies

    Josephson current via spin and orbital states of a tunable double quantum dot

    Full text link
    Supercurrent transport is experimentally studied in a Josephson junction hosting a double quantum dot (DQD) with tunable symmetries. The QDs are parallel-coupled to two superconducting contacts and can be tuned between strong inter-dot hybridization and a ring geometry where hybridization is suppressed. In both cases, we observe supercurrents when the two interacting orbitals are either empty or filled with spins, or a combination. However, when each QD hosts an unpaired spin, the supercurrent depends on the spin ground state. It is strongly suppressed for the ring geometry with a spin-triplet ground state at zero external magnetic field. By increasing the QD hybridization, we find that a supercurrent appears when the ground state changes to spin-singlet. In general, supercurrents are suppressed in cases of spin doublet ground state, but an exception occurs at orbital degeneracy when the system hosts one additional spin, as opposed to three, pointing to a broken particle-hole symmetry

    Age-dependent Decrease in 11β-Hydroxysteroid Dehydrogenase Type 2 (11β-HSD2) Activity in Hypertensive Patients

    Get PDF
    Background The prevalence of arterial hypertension lacking a defined underlying cause increases with age. Age-related arterial hypertension is insufficiently understood, yet known characteristics suggest an aldosterone-independent activation of the mineralocorticoid receptor. Therefore, we hypothesized that 11β-HSD2 activity is age-dependently impaired, resulting in a compromised intracellular inactivation of cortisol (F) with F-mediated mineralocorticoid hypertension. Methods Steroid hormone metabolites in 24-h urine samples of 165 consecutive hypertensive patients were analyzed for F and cortisone (E), and their TH-metabolites tetrahydro-F (THF), 5αTHF, TH-deoxycortisol (THS), and THE by gas chromatography-mass spectroscopy. Apparent 11β-HSD2 and 11β-hydroxylase activity and excretion of F metabolites were assessed. Results In 72 female and 93 male patients aged 18-84 years, age correlated positively with the ratios of (THF + 5αTHF)/THE (P = 0.065) and F/E (P < 0.002) suggesting an age-dependent reduction in the apparent 11β-HSD2 activity, which persisted (F/E; P = 0.020) after excluding impaired renal function. Excretion of F metabolites remained age-independent most likely as a consequence of an age-dependent diminished apparent 11β-hydroxylase activity (P = 0.038). Conclusion Reduced 11β-HSD2 activity emerges as a previously unrecognized risk factor contributing to the rising prevalence of arterial hypertension in elderly. This opens new perspectives for targeted treatment of age-related hypertensio

    Born from pre-eclamptic pregnancies predisposes infants to altered cortisol metabolism in the first postnatal year

    Get PDF
    Pre-eclampsia leads to disturbed fetal organ development, including metabolic syndrome, attributed to altered pituitary-adrenal feedback loop. We measured cortisol metabolites in infants born from pre-eclamptic and normotensive women and hypothesised that glucocorticoid exposure would be exaggerated in the former. Twenty-four hour urine was collected from infants at months 3 and 12. Cortisol metabolites and apparent enzyme activities were analysed by gas chromatography-mass spectrometry. From 3 to 12 months, excretion of THS, THF and pregnandiol had risen in both groups; THF also rose in the pre-eclamptic group. No difference was observed with respect to timing of the visit or to hypertensive status for THE or total F metabolites (P>0.05). All apparent enzymes activities, except 17α-hydroxylase, were lower in infants at 12 compared to 3 months in the normotensive group. In the pre-eclamptic group, only 11β-HSD activities were lower at 12 months.17α-hydroxylase and 11β-HSD activities of tetrahydro metabolites were higher in the pre-eclamptic group at 3 months (P<0.05). 11β-hydroxylase activity increased in the pre-eclamptic group at 12 months. Cortisol excretion, determined by increased 11β-hydroxylase, compensates for high 11β-HSD-dependent cortisol degradation at 3 months and at 12 months counterbalances the reduced cortisol substrate availability in infants born from pre-eclamptic mothers

    Critical role of astroglial apolipoprotein E and liver X receptor-α expression for microglial Aβ phagocytosis

    Get PDF
    Liver X receptors (LXRs) regulate immune cell function and cholesterol metabolism, both factors that are critically involved in Alzheimer's disease (AD). To investigate the therapeutic potential of long-term LXR activation in amyloid-β (Aβ) peptide deposition in an AD model, 13-month-old, amyloid plaque-bearing APP23 mice were treated with the LXR agonist TO901317. Postmortem analysis demonstrated that TO901317 efficiently crossed the blood–brain barrier. Insoluble and soluble Aβ levels in the treated APP23 mice were reduced by 80% and 40%, respectively, compared with untreated animals. Amyloid precursor protein (APP) processing, however, was hardly changed by the compound, suggesting that the observed effects were instead mediated by Aβ disposal. Despite the profound effect on Aβ levels, spatial learning in the Morris water maze was only slightly improved by the treatment. ABCA1 (ATP-binding cassette transporter 1) and apolipoprotein E (ApoE) protein levels were increased and found to be primarily localized in astrocytes. Experiments using primary microglia demonstrated that medium derived from primary astrocytes exposed to TO901317 stimulated phagocytosis of fibrillar Aβ. Conditioned medium from TO901317-treated ApoE−/−or LXRα−/−astrocytes did not increase phagocytosis of Aβ. In APP23 mice, long-term treatment with TO901317 strongly increased the association of microglia and Aβ plaques. Short-term treatment of APP/PS1 mice with TO901317 also increased this association, which was dependent on the presence of LXRα and was accompanied by increased ApoE lipidation. Together, these data suggest that astrocytic LXRα activation and subsequent release of ApoE by astrocytes is critical for the ability of microglia to remove fibrillar Aβ in response to treatment with TO901317.</jats:p

    Outcome after Desensitization in HLA or ABO-Incompatible Kidney Transplant Recipients: A Single Center Experience

    Get PDF
    Background The shortage of deceased donors led to an increase of living donor kidney (LDK) transplantations performed in the presence of donor-specific antibodies (DSA) or ABO incompatibility (ABOi) using various desensitization protocols. Methods We herein analyzed 26 ABOi and 8 Luminex positive DSA patients who were successfully desensitized by anti-CD20, antigen-specific immunoadsorption and/or plasmapheresis to receive an LDK transplant. Twenty LDK recipients with non-donor-specific HLA-antibodies (low risk) and 32 without anti-HLA antibodies (no risk) served as control groups. Results 1-year graft survival rate and renal function was similar in all 4 groups (creatinine: 1.63 +/- 0.5 vs 1.78 +/- 0.6 vs 1.64 +/- 0.5 vs 1.6 +/- 0.3 mg/dl in ABOi, DSA, low risk and no risk group). The incidence of acute T-cell mediated rejections did not differ between the 4 groups (15% vs 12, 5% vs 15% vs 22% in ABOi, DSA, low risk and no risk), while antibody-mediated rejections were only found in the DSA (25%) and ABOi (7.5%) groups. Incidence of BK nephropathy (BKVN) was significantly more frequent after desensitization as compared to controls (5/34 vs 0/52, p = 0.03). Conclusion We demonstrate favorable short-term allograft outcome in LDK transplant recipients after desensitization. However, the desensitization was associated with an increased risk of BKVN

    Placental expression of the angiogenic placental growth factor is stimulated by both aldosterone and simulated starvation

    Get PDF
    Aldosterone is an important factor supporting placental growth and fetal development. Recently, expression of placental growth factor (PlGF) has been observed in response to aldosterone exposure in different models of atherosclerosis. Thus, we hypothesized that aldosterone up-regulates growth-adaptive angiogenesis in pregnancy, via increased placental PlGF expression. We followed normotensive pregnant women (n = 24) throughout pregnancy and confirmed these results in a second independent first trimester cohort (n = 36). Urinary tetrahydroaldosterone was measured by gas chromatography-mass spectrometry and corrected for creatinine. Circulating PlGF concentrations were determined by ELISA. Additionally, cultured cell lines, adrenocortical H295R and choriocarcinoma BeWo cells, as well as primary human third trimester trophoblasts were tested in vitro. PlGF serum concentrations positively correlated with urinary tetrahydroaldosterone corrected for creatinine in these two independent cohorts. This observation was not due to PlGF, which did not induce aldosterone production in cultured H295R cells. On the other hand, PlGF expression was specifically enhanced by aldosterone in the presence of forskolin (p < 0.01) in trophoblasts. A pronounced stimulation of PlGF expression was observed with reduced glucose concentrations simulating starvation (p < 0.001). In conclusion, aldosterone stimulates placental PlGF production, enhancing its availability during human pregnancy, a response amplified by reduced glucose supply. Given the crucial role of PlGF in maintaining a healthy pregnancy, these data support a key role of aldosterone for a healthy pregnancy outcome
    corecore