2 research outputs found

    Outcrop-scale manifestations of reactivation during multiple superimposed rifting and basin inversion events: the Devonian Orcadian Basin, northern Scotland

    Get PDF
    The Devonian Orcadian Basin in Scotland hosts extensional fault systems assumed to be related to the initial formation of the basin, with only limited post-Devonian inversion and reactivation. However, a recent detailed structural study across Caithness, underpinned by published Re–Os geochronology, shows that three phases of deformation are present. North–south- and NW–SE-trending Group 1 faults are related to Devonian ENE–WSW transtension associated with sinistral shear along the Great Glen Fault during the formation of the Orcadian Basin. Metre- to kilometre-scale north–south-trending Group 2 folds and thrusts are developed close to earlier sub-basin-bounding faults and reflect late Carboniferous–early Permian east–west inversion associated with dextral reactivation of the Great Glen Fault. The dominant Group 3 structures are dextral oblique NE–SW-trending and sinistral east–west-trending faults with widespread syndeformational carbonate mineralization (± pyrite and bitumen) and are dated using Re–Os geochronology as Permian (c. 267 Ma). Regional Permian NW–SE extension related to the development of the offshore West Orkney Basin was superimposed over pre-existing fault networks, leading to local oblique reactivation of Group 1 faults in complex localized zones of transtensional folding, faulting and inversion. The structural complexity in surface outcrops onshore therefore reflects both the local reactivation of pre-existing faults and the superimposition of obliquely oriented rifting episodes during basin development in the adjacent offshore areas

    New structural and Re–Os geochronological evidence constraining the age of faulting and associated mineralization in the Devonian Orcadian Basin, Scotland

    Get PDF
    The Devonian Orcadian Basin in northern Scotland belongs to a regionally linked system of post-Caledonian continental basins extending northwards to western Norway and eastern Greenland. Extensional fault systems that cut the Orcadian Basin sequences are commonly assumed to be Devonian, with some limited inversion and reactivation proposed during the Carboniferous and later times. We present a detailed structural study of the regionally recognized fault systems exposed in the Dounreay area of Caithness, which host significant amounts of authigenic mineralization (carbonate, base metal sulphides, bitumen). Structural and microstructural analyses combined with Re–Os geochronology have been used to date syndeformational fault infills (pyrite) suggesting that faulting, brecciation and fluid flow events are likely to have occurred during the Permian (267.5 ± 3.4 [3.5] Ma). Stress inversion of fault slickenline data associated with mineralization suggest NW–SE regional rifting, an episode also recognized farther west in Sutherland. Thus a dominant set of Permian age brittle faults is now recognized along the entire north coast of Scotland, forming part of the regional-scale North Coast Transfer Zone located on the southern margin of the offshore West Orkney Basin
    corecore